
Version Control!
and what it’s good for

What we’ll cover today

1. Version control overview: what, why and how

2. Comparing technologies

3. git gud - core commands and concepts

4. Gotchas and footguns - general and Unity-specific

5. Practical workshop exercises - cloning a project, making
changes and pushing them

What is version control,
actually?

Working Copy
(aka your project)

Repository
(a saved history of
changes to your

project)

You do stuff here
(add, remove, edit files)

And each time you
make changes you

want to save, you send
them here

You can also fetch back
old versions of your work!

ok but y tho?
we all know how to use dropbox or google drive

already

game dev: a play in one act
YOU

I have a great idea to improve this THING
THAT IS DUE TOMORROW, it should be
pretty easy to add, I will change some
code and edit some assets

THING THAT IS DUE TOMORROW
breaks horribly

YOU
oh no

Good things come in threes

1. Backups

2. Sharing/collaboration

3. Project history (i.e. “versions”)

STOP: vocab time!
“source control” and “version control” mean the same thing

VCS stands for Version Control Software. These are all types of VCS:

• git (not an acronym)

• svn (not an acronym; short for “Subversion”)

• Unity Collaborate (we’ll talk more about this in a moment)

• CVS (ok, this one is an acronym: Concurrent Versions System)

• Perforce, Plastic SCM (acronym!), Mercurial, ClearCase, etc, etc….

git vs Unity Collaborate
(ok but y tho, round 2)

git (with free Github
account)

Unity Collaborate (with
Unity teams free account)

Works with non-Unity
projects?

Keeps project history? Forever 90 days

Number of users Unlimited for public
repositories, 3 for private 3

Storage space 1GB recommended per
repository, hard limit 100GB 1GB per team

Remote
Repository

The Internet

Working
Copy

Local
Repository

Your computer

Working
Copy

Local
Repository

Teammate’s computer

Remote
Repository

Working Copy Working Copy Working Copy

You Teammate 1 Teammate 2

The Internet

git gud (the basics)

git status

git add -A

git commit -m “useful sensible commit message
explaining what you’ve changed goes here”

git pull

git push

• Ready to push changes? commit -> pull (and merge) ->
push

• Unity scenes and prefabs don’t always merge well - you’ll
need some dogs licking windows or merge chickens

• Always add assets to a project via the Unity Editor

• Always check the project runs before committing

• TALK TO YOUR TEAM

enough talking, let’s
break a project

git better (handling
merge conflicts)

Merge conflicts
git status

git checkout --ours <FILENAME>

or

git checkout --theirs <FILENAME>

then

git add -A

git commit -m "Fixed merge conflicts like a boss"

Too scary? Worried you’ll break it?

git merge --abort

