
Tutorials
"Hello, World!" in Node.js

Web App Template for Beginners

Command Line Tools & Utilities

Making a website for your HTML, JS, CSS or p5.js files

How to export your p5.js as a video

"Hello, World!" in Node.js

Introduction
The first program most people write when learning a new programming language is one form or
another of the infamous "Hello, World!".

Preparation
What you'll need to know
To follow this tutorial you should be familiar with the basics of the command-line (also known as
Terminal on OS X or Command Prompt on Windows). Below are some resources that will help you
get up to speed on this topic:

Code Academy short course - Code Academy provide a short course on command line.
It has an interactive prompt in the browser so you can get to grips with the syntax before
diving into the CLI.
An introduction to Unix and Shell - The Interactive Telecommunications Program
at NYU has a very interesting introduction to Unix, which is the precursor and model for
Android, Apple iOS, Raspbian (Raspberry Pi), Linux and OSx operating systems. It is also a
good overview of the history, philosophy and the anatomy of the shell.

Install NodeJS
You will need to download and install NodeJS. Download the installer for your particular operating
system (OSX, Windows or Linux) from the NodeJS website and follow the instructions.

To test if NodeJS has been installed successfully:

1. Open a command line prompt (Terminal or Command Prompt)
2. And type the following: $ node -v

You should see the version of NodeJS that you installed. Something like: v4.4.7 . If you see an error
then you may need to downloading and installing again.

Install other software (optional)

Do not type the `$`. This just tells you that everything following the dollar is a single line in
the command line prompt.

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://www.codecademy.com/learn/learn-the-command-line
http://itp.nyu.edu/groups/flyby/unix-intro-1/
https://tisch.nyu.edu/itp
https://nodejs.org

We recommend installing and using Atom text editor, because it is free, cross-platform and good
for beginners to advanced programmers.

Tutorial
To create and execute our first NodeJS application we simply (1) create a text file with the .js
suffix, (2) edit the file and add some JavaScript and (3) pass this file to NodeJS using the command-
line prompt.

(1) Create a directory and file
Our goal is to create a directory called hello-world and within it a file called hello.js . You can create
a directory and a file using many methods but below are the instructions and an animation of how
this is done using the command line.

The commands above explained:

cd [directory-name] - Change the current directory you are in
mkdir [directory-name] - Make a new directory in your current location
touch [file-name] - Create an empty file

nodejs1-terminal.gifImage not found or type unknown

The result of this should be a directory and file on your desktop in this structure:

(2) Edit file and add JavaScript
Open the file hello.js in your preferred text editor
Add the following code to the top of the file and save:

You will be editing JavaScript files throughout this tutorial, which can be done with almost
any simple text editor you happen to have on your computer. This excludes Microsoft's
Word, Apple's Pages or other word processing software, which don't count as simple and will
add other unseen characters to your file.

$ cd Desktop
$ mkdir hello-world
$ cd hello-world
$ touch hello.js

Desktop/
 └── hello-world/
 └── hello.js

https://atom.io/

(3) Execute our hello.js script using NodeJS
Open a command-line prompt
Change directory so that you are inside Desktop/hello-world/

- Pass your `hello.js` script to the `node` command ``` $ node hello.js ``` You should see the
"Hello, world of NodeJS!" message printed out into your CLI prompt.
Below is an animation of this step.

Execute node scriptImage not found or type unknown

console.log("Hello, world of NodeJS!");

$ cd ~/Desktop/hello-world

TIP: When changing directory with the `cd` command (or using any command for that
matter) you can use the tilde (`~`) to navigate to your home directory. e.g. `cd ~/Desktop`

Web App Template for Beginners
Start with this one. Learn to build a local web app that you can modify in your future projects.

Background
Each web app has a frontend and backend. Frontend is usually for UI and design and runs on
browser, on user’s own computer. P5.js sketches are frontend.

Backend is behind-the-scenes code that runs on server. It is stores and organizes data and delivers
your app to users, ie. clients. If 10 people access your website, there are 10 frontends in action but
only 1 backend.

Backend is often built with Node.js or Python. Here we use Node.js.

Setup
1) Get a code editor if you don’t have one yet. I like Visual Studio.

2) Create a folder for your project on your laptop. For example, a folder called “example_app” in
you Documents folder.

3) For Visual Studio: Open example_app folder and create the following file setup by clicking the
folder and file icons:

https://code.visualstudio.com/
https://lab.arts.ac.uk/uploads/images/gallery/2022-01/ypfoSGc0HgeuKYm1-visual-studio.png

So there are three empty files in “public” subfolder and an empty server.js outside that in the root
folder.

Alternatively you can create the setup outside your code editor, however Visual Code has made it
really easy to create code files from the scratch so that’s why I recommend it.

Server with Node and Express
4) Install Node.

5) Watch videos 12.1. and 12.2. of this excellent tutorial by Daniel Shiffman. He explains what
Node and Express are and how to get started with them. You are welcome to follow along, but
steps 6-10 will give you the same results.

6) Open the command line on your computer. On Mac, go to Applications/Utilities/Terminal.

On command line, type cd . Then in Finder, select "example_app" folder and drag it to command
line. It gives you the path to that folder automatically. Press enter.

Now you are operating inside that folder using command line. It should look like this:

7) On command line, type npm init . Answer the questions by typing to the command line and
pressing enter after each question. This creates a package.json file that makes the project easier
for others to manage and install. If confused, check the tutorial on step 5.

When done, type npm install express . This installs Express to this project folder (we only want it to
live in this folder, not everywhere on your computer).

8) Go to your empty server.js file. Add the following code:

Here we are telling the backend to:

-Use Express framework

const express = require("express");
const app = express();
const server = app.listen(3000);
app.use(express.static("public"));
console.log("It works");

https://nodejs.org/en/
https://www.youtube.com/watch?v=2hhEOGXcCvg
https://lab.arts.ac.uk/uploads/images/gallery/2022-01/m6AHZYb5QY30pDsf-command-example.png

-Set our server to local port 3000

-Serve files that are in the folder called "public"

-Print "It works" when the server is running

9) Type node server.js on command line and press enter. This is how you tell Node to run a file
called server.js. It should print "It works" on the command line.

10) Double-check by going to address localhost:3000 on your browser. No errors? Good!

Now you should have a basic server running! But we don’t have anything that the server could
show. We’ll fix it next.

HTML setup
11) Go to your empty html file and add the following code:

12) Go to localhost:3000 and refresh. You should see a minimalist white page with the text My first
title!

If you get any errors, check your server.js and index.html files again. It's very easy to make a
spelling mistake!

Client Javascript setup
13) Now we are only serving html. Let’s add the p5 library to serve some p5.js , ie. Javascript!

In your html file, add the following line of code in the <head> section of your html, after the
<title> line:

So the section now looks like:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>My test project</title>
 </head>
 <body>
 <h1>My first title!</h1>
 </body>
</html>

<script src="https://cdn.jsdelivr.net/npm/p5@1.4.0/lib/p5.js"></script>

This line of code gives us access to p5.js library in our project. Note that you can add other
Javascript libraries in a similar fashion, like ML5 for machine learning or Three.js for building 3D
visuals.

14) Our Javascript will live in the sketch.js file. First we need to reference that file in out HTML so
that there is a connection. You can think about this way: HTML file is like the frame of a painting,
and JS is what happens on the canvas of the painting. We need both!

In index.html , add the following line to the <body> section:

<script src="sketch.js"></script>

So that it looks like:

15) In the empty sketch.js , paste the following code:

Here, we are first drawing a grey background of 400 x 400 pixels. Then we add a pink rectangle
with red outline to the center of the canvas. For more p5.js help, see their reference.

<head>
 <meta charset="utf-8" />
 <title>My test project</title>
 <script src="https://cdn.jsdelivr.net/npm/p5@1.4.0/lib/p5.js"> </script>
</head>

<body>
 <h1>My first title!</h1>
 <script src="sketch.js"></script>
</body>

function setup() {
 createCanvas(400, 400);
}

function draw() {
 background(100);
 rectMode(CENTER);
 strokeWeight(3);
 stroke(255, 0, 0);
 fill(255, 192, 203);
 rect(100, 100, 200, 200);
}

https://learn.ml5js.org/#/
https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
https://p5js.org/reference/

16) Go to localhost:3000 and refresh the page. You should see text My first title!, grey background
and the red-pink rectangle. Your first web app with backend and frontend!

Note
This is a local server and local project. Currently it only lives on your computer. In order to make a
public web app that anyone can access, you need to deploy it. There will be a tutorial for this later.
:)

Next
Try to add a paragraph of text to your page. Guide

Try to add an image to your page. Guide

Try to change the color of the rectangle with a mouse click. Guide

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_default
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_images_trulli
https://p5js.org/reference/#/p5/mouseClicked

Command Line Tools & Utilities
A Command Line Interface is a way of interacting with a computer by issuing commands in the
form of lines of text. These commands interface with your operating system and hardware to
perform complex and intensive operations.

There is a large amount of useful Free and Open Source Software (FOSS) available online that does
not need or use a Graphical User Interface (GUI). Often this software works more efficiently with
the operating system or directly with the hardware and therefore can perform tasks such as image,
video or sound manipulation with ease.

Also because the CLI has a scripting language you can write scripts that automates certain tasks.
For example:

1. Downloading/uploading files from servers or web pages
2. Converting, cropping, trimming, splitting, combining video files
3. Converting, cropping, combining image files
4. Adding effects to, combining, trimming, splitting audio files
5. Mixing video & audio
6. Extracting video & audio
7. Adding text to video or images

Installing CLI Tools
Homebrew - Package Manager for macOS
Homebrew is a package manager for the macOS CLI. Once you install it on the CLI you can with
one line install a lot of software from it's repository.

1. Open Terminal
2. Copy and paste the following line:

3. Hit enter and it will install it for you.
4. To test if it was successful enter the following command:

FFMPEG
FFMPEG is a powerful and flexible tool for performing any transformation tasks on video files.

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew -v

https://brew.sh/

Install

Example use / Tutorial
The basics -
https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide#The_Basics

SoX
The homepage for SoX calls it "the Swiss Army knife of sound processing programs" and gives the
following description:

Install

Example use / Tutorials
Good introduction and some examples - http://www.krisyu.org/blog/processing-

audio-files-sox.html

ImageMagick
ImageMagick is a powerful image manipulation tool.

Install

brew install ffmpeg \
 --with-tools \
 --with-fdk-aac \
 --with-freetype \
 --with-fontconfig \
 --with-libass \
 --with-libvorbis \
 --with-libvpx \
 --with-opus \
 --with-x265

SoX is a cross-platform (Windows, Linux, MacOS X, etc.) command line utility
that can convert various formats of computer audio files in to other formats. It
can also apply various effects to these sound files, and, as an added bonus, SoX
can play and record audio files on most platforms.

“

brew install sox

https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide#The_Basics
http://www.krisyu.org/blog/processing-audio-files-sox.html
http://www.krisyu.org/blog/processing-audio-files-sox.html

Example use
A comprehensive list of example use - http://www.imagemagick.org/Usage/

brew install imagemagick

http://www.imagemagick.org/Usage/

Making a website for your HTML, JS, CSS or p5.js
files
We are going to make a website using something called GitHub pages to make a website. Signing
up for a GitHub account and subsequently creating a GitHub pages URL will allow you to upload
your HTML, JS & CSS files online, so that you can access your website from anywhere.

Bit of background (Feel free to skip)
GitHub is a website that stores what are called repositories. Repositories contain code, very much
just like a folder on your computer. Git is what is called a version control system and to us what it
means is that when you save files and commit them it will also save the previous version of your
files too. This is very popular with a lot of people in the world of tech, because if something goes
wrong, you can always go back to when it did work!

Step 1: Signing up for GitHub
Go to https://github.com and sign up for an account, the form should be on the homepage. There
will be a few extra forms when you signup, you can skip through these.

Very important!!!1!!1!

The way that GitHub pages work is that in the end, your website will have the name of your
username in it (.github.io). For instance, if my username was 'jonny' my GitHub pages URL will be
https://jonny.github.io. So make sure you choose your username carefully!

Step 2: Creating a repository
Now we have to create a repository. On the left hand side there should be a link that says Create
a repository. Click this link and it should take you to this page:

https://github.com

Very important!!!1!!1!

This is where we need to set our repository name to equal exactly this structure: .github.io. So
again if my username is 'jonny' in the Repository name field I would insert 'jonny.github.io'.

Keep the button marked as 'Public' and everything else as default and click Create Repository

Step 3: Uploading your code
Now we need to upload our files to the Github repository. Hopefully after you created your
repository you should see the below page. What we want to do is click the link that says
uploading an existing file

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/0ElwDuSog2prPcvK-NEW_REPO.png

After that, if you drag your HTML, JS and CSS files (if you have them) onto the upload section, they
should upload to your repository. BUT! You need to 'commit the changes' for them to be saved.

Step 4: Commiting your changes
This section is also relevant if you want to update your files too. Everytime you make changes to
the files, you have to 'commit them'. To the Git repository, that basically means, storing these new
files, committing them to memory.

Github makes this part quite easy. If you want to add a message you can do, but if not, all you
have to do is click Commit changes and your files will be stored in the git repository.

Step 5: Viewing your website

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/wTIGzou3MBDsNU2B-CREATED_REPO.png
https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/DFN8tZa58yTia4N8-COMMITING_CODE.png

It may take a couple of minutes but, after you have uploaded your code, you should be able to see
your website running at .github.io (replacing with your actual username).

Congratulations!

Step 6: Updating files
To update files so that you make your newest files available on the internet, you need to follow the
same as Steps 3 & 4. The only difference is you now click that says Upload files which you can
find where, below

Optional steps
Everything in this section isn't necessary but it might help you out, to work faster and better!

Step 7: Using a Git application
We can download github's application to help speed up commiting files. You can download the
program here: https://desktop.github.com/. Once you've downloaded it, you need to log in and
set up your name and e-mail address. Then you will see all of your repositories on your account.

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/weMzu2PAeHvzI4nh-UPLOAD_FILES.png
https://desktop.github.com/

If you click your .github.io link and then the blue 'clone' button beneath it, it will download the
repository to your computer. But the more important part now is that from that folder it
downloaded, any changes you make it will watch them so that you can upload them back to
GitHub.

By default it will download the repository to this location: Documents/Github/REPO_NAME

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/jL8BxtGkXrPY24Uk-GITHUB_CLIENT.png

When you make changes to your files, if you check Github Desktop again, you should see that its
detected changes in your files.

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/LWwlMR1hMdZYcVie-REPO_LOCATION.png
https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/lMeKVZvPPQRJhA2j-FILE_CHANGES.png

After you commit them in Github Desktop, in the bottom left of the screen (similar to Step 4) you
can then publish the changes to your website

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/nKfmPSCTOOd4qBEc-PUBLISH.png

How to export your p5.js as a video
How to Video Capture your p5.js Sketch
If you're creating a piece of time-based work in p5.js you may want to capture the canvas as a
video. For example, if you have a generative design that evolves over time, or an animation
sequence. In this tutorial you will learn how to:

1. Download and include a custom library to your p5.js sketch
2. Program that library to access your camera as a capture card.

Custom Library
The first step we need to take is to download the custom library for this process. This library can be
found at the following Moodle link . Following that link will automatically download a src.zip
folder.

Once this folder is downloaded you can extract it to either your desktop or downloads folder
(anywhere you can easily find it). We are going to upload the files from this folder to our sketch
now.

Your Sketch
1. There is a red arrow ">" button beneath the play and stop buttons. Click this to expand

the menu which shows all your sketch files. You will need to create a new folder called src
and upload all the seperate files from the src.zip you downloaded at the beginning.

2. Click on the "index.html" file in the side bar. We know need to add the following lines of code in
the head of our html file. You should see the default p5.js scripts. Feel free to add these
underneath.

make sure you sign into Moodle to access the files.

make sure you turn off "auto-refresh" if you have it enabled as this could cause the video
capture to crash as you're programming

If you do not create a folder called src and upload the files into it then you may encounter
errors with the next code block. You will see that my files are referened to the path "./src/"

 <script src = "./src/CCapture.js"> </script>
 <script src = "./src/webm-writer-0.2.0.js"></script>

https://moodle.arts.ac.uk/mod/resource/view.php?id=927191

3. Return to your "sketch.js" file where we can now add the following lines of code to the top
of sketch as a global variable. This will create a new CCapture object that we can store in
the variable "capture". We also set a captureLength variable. I set it to 60, which will
capture 1 second of material at 60 frames per second.

7. Go to your draw function and put this code at the beginning to start the capturing

This line of code is telling the sketch to start recording once the frameCount == 1.We do this so
that the program can run the first frame at setup before beginning to capture. If you wanted to
delay the recording by a certain amount of frames you can change the boolean check.

8. The last block of code in your draw function should be this. When your program reaches
this point it is going to check if the frameCount is still below the captureLength, and if that
is true, it will keep recording. The minute the frameCount is over the captureLength the
code block is going to evaluate with the else clause which will end the capture and save
the output.

 <script src = "./src/download.js"></script>

If you don't add these scripts to the head of the html file you will not be able to use the
functions. If you encounter errors that describe undefined functions with regard to the
capture code then check here first.

let capture = new CCapture({
 frameRate: 60,
 format: "webm",
});

let captureLength = 60;

 if (frameCount == 1) {
 capturer.start();
 }

 if (frameCount < captureLength) {
 capturer.capture(canvas);
 } else if (frameCount === captureLength) {
 capturer.save();
 capturer.stop();
 }

The Draw Function in Full

This is a link to a finished version if you're having problems with your own.
Video Exporter Template

function draw() {
 //start capturing
 if (frameCount == 1) {
 capturer.start();
 }

 //start coding

 background(220);

 //stop capturing
 if (frameCount < captureLength) {
 capturer.capture(canvas);
 } else if (frameCount === captureLength) {
 capturer.save();
 capturer.stop();
 }
}

https://editor.p5js.org/MichaelMizra/sketches/6ziokqX9X

