
Develop applications and games using programming and scripting languages such as Java, C++,
C#, Swift and JavaScript for platforms including Processing, Node.js, OpenCV and Unity.

Useful learning resources

Tutorials

"Hello, World!" in Node.js

Web App Template for Beginners

How to fix "Internal data stream error" in Processing 4

Command Line Tools & Utilities

Making a website for your HTML, JS, CSS or p5.js files

How to export your p5.js as a video

Workshop: Introduction to Creative Coding

Week 1 - Coordinates, shapes and colour

Week 2 - Animation, conditionals & random numbers

Week 3 - Iteration, arrays, objects and pixel arrays

Week 4 - Other inputs and APIs

Other workshops

Creative Coding 101

Concepts

Planning

Systems in art & design

3D Geometry and Parametric Design

Creative Coding

HTML & CSS Book - A book aimed at designers introducing concepts within web
development

JavaScript: The Good Parts by Douglas Crockford

Make: Getting Started with p5.js: Making Interactive Graphics in JavaScript and

Processing

Learning Processing by Daniel Shiffman
Nature of Codeby Daniel Shiffman

JavaScript Syntax Basics - This is a great cheatsheet for understanding the basics of
the JavaScript language/syntax. A lot of concepts here are also applicable knowledge in a
variety of other programming languages.
Khan Academy Programming courses - Free online video courses with interactive
code editor
Lynda.com - Foundations of Programming Fundamentals

Learn JS - Introduces some basics of JavaScript using an interactive browser-based
prompt
Praxent - Resource roundup with helpful articles on beginner coding. (Thank you Emma!)

Useful learning resources
Books

- HTML & CSS

- JavaScript

- p5.js

- Processing

Websites

- JavaScript

- P5.js

http://www.htmlandcssbook.com/
https://www.amazon.co.uk/JavaScript-Good-Parts-Douglas-Crockford/dp/0596517742
http://shop.oreilly.com/product/0636920032076.do
http://shop.oreilly.com/product/0636920032076.do
https://github.com/processing/p5.js/wiki/JavaScript-basics
https://www.khanacademy.org/computing/computer-programming/programming
https://www.lynda.com/JavaScript-tutorials/Foundations-of-Programming-Fundamentals/83603-2.html
http://www.learn-js.org/en/Hello,_World!
https://praxent.com/blog/coding-information-resources-for-kids

Daniel Shiffman has a vast collection of videos introducing programming using p5.js. Take
a look through these videos if you are interested in getting a head start:
https://vimeo.com/channels/learningp5js
Kadenze is an online platform for creative education. You can take structured courses with
plenty of video based content and exercises. Here is an Introduction to Programming for
the Visual Arts with P5:
https://www.kadenze.com/courses/introduction-to-programming-for-the-visual-arts-with-
p5-js/info

A course that intersects graphic design and programming run by Rune Madesen at ITP in
New York: http://printingcode.runemadsen.com/
[Video] Printing Code: Programming and the Visual Arts, Rune Madsen
https://vimeo.com/61113159
Soon to be an online book with tutorials: https://programmingdesignsystems.com/

https://www.codecademy.com/learn/learn-html-css

https://vimeo.com/69907695

1. https://github.com/atduskgreg/opencv-processing
2. https://github.com/shiffman/Face-It

Face detection
Which Face
Edge detection
Pattern matching
Background Subtraction

Tableau

Raw

Timeline

- Programming Design Systems / Printing Code

- HTML & CSS

- Open CV

- Code

- Topics

- Data Vis

https://public.tableau.com/s/
http://rawgraphs.io/
http://www.simile-widgets.org/timeline/

Open Graph Commons

Exhibit

The Coding Train

Videos

https://graphcommons.com/
http://www.simile-widgets.org/exhibit/
https://www.youtube.com/user/shiffman/videos

Tutorials

Tutorials

The first program most people write when learning a new programming language is one form or
another of the infamous "Hello, World!".

To follow this tutorial you should be familiar with the basics of the command-line (also known as
Terminal on OS X or Command Prompt on Windows). Below are some resources that will help you
get up to speed on this topic:

Code Academy short course - Code Academy provide a short course on command line.
It has an interactive prompt in the browser so you can get to grips with the syntax before
diving into the CLI.
An introduction to Unix and Shell - The Interactive Telecommunications Program
at NYU has a very interesting introduction to Unix, which is the precursor and model for
Android, Apple iOS, Raspbian (Raspberry Pi), Linux and OSx operating systems. It is also a
good overview of the history, philosophy and the anatomy of the shell.

You will need to download and install NodeJS. Download the installer for your particular operating
system (OSX, Windows or Linux) from the NodeJS website and follow the instructions.

To test if NodeJS has been installed successfully:

1. Open a command line prompt (Terminal or Command Prompt)
2. And type the following: $ node -v

You should see the version of NodeJS that you installed. Something like: v4.4.7 . If you see an error
then you may need to downloading and installing again.

"Hello, World!" in Node.js

Introduction

Preparation
What you'll need to know

Install NodeJS

Do not type the `$`. This just tells you that everything following the dollar is a single line in
the command line prompt.

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://www.codecademy.com/learn/learn-the-command-line
http://itp.nyu.edu/groups/flyby/unix-intro-1/
https://tisch.nyu.edu/itp
https://nodejs.org

We recommend installing and using Atom text editor, because it is free, cross-platform and good
for beginners to advanced programmers.

To create and execute our first NodeJS application we simply (1) create a text file with the .js
suffix, (2) edit the file and add some JavaScript and (3) pass this file to NodeJS using the command-
line prompt.

Our goal is to create a directory called hello-world and within it a file called hello.js . You can create
a directory and a file using many methods but below are the instructions and an animation of how
this is done using the command line.

The commands above explained:

cd [directory-name] - Change the current directory you are in
mkdir [directory-name] - Make a new directory in your current location
touch [file-name] - Create an empty file

nodejs1-terminal.gif

The result of this should be a directory and file on your desktop in this structure:

Install other software (optional)

You will be editing JavaScript files throughout this tutorial, which can be done with almost
any simple text editor you happen to have on your computer. This excludes Microsoft's
Word, Apple's Pages or other word processing software, which don't count as simple and will
add other unseen characters to your file.

Tutorial

(1) Create a directory and file

$ cd Desktop
$ mkdir hello-world
$ cd hello-world
$ touch hello.js

Desktop/
 └── hello-world/
 └── hello.js

(2) Edit file and add JavaScript

https://atom.io/

Open the file hello.js in your preferred text editor
Add the following code to the top of the file and save:

Open a command-line prompt
Change directory so that you are inside Desktop/hello-world/

- Pass your `hello.js` script to the `node` command ``` $ node hello.js ``` You should see the
"Hello, world of NodeJS!" message printed out into your CLI prompt.
Below is an animation of this step.

Execute node script

console.log("Hello, world of NodeJS!");

(3) Execute our hello.js script using NodeJS

$ cd ~/Desktop/hello-world

TIP: When changing directory with the `cd` command (or using any command for that
matter) you can use the tilde (`~`) to navigate to your home directory. e.g. `cd ~/Desktop`

Tutorials

Start with this one. Learn to build a local web app that you can modify in your future projects.

Each web app has a frontend and backend. Frontend is usually for UI and design and runs on
browser, on user’s own computer. P5.js sketches are frontend.

Backend is behind-the-scenes code that runs on server. It is stores and organizes data and delivers
your app to users, ie. clients. If 10 people access your website, there are 10 frontends in action but
only 1 backend.

Backend is often built with Node.js or Python. Here we use Node.js.

1) Get a code editor if you don’t have one yet. I like Visual Studio.

2) Create a folder for your project on your laptop. For example, a folder called “example_app” in
you Documents folder.

3) For Visual Studio: Open example_app folder and create the following file setup by clicking the
folder and file icons:

Web App Template for Beginners

Background

Setup

https://code.visualstudio.com/
https://lab.arts.ac.uk/uploads/images/gallery/2022-01/ypfoSGc0HgeuKYm1-visual-studio.png

So there are three empty files in “public” subfolder and an empty server.js outside that in the root
folder.

Alternatively you can create the setup outside your code editor, however Visual Code has made it
really easy to create code files from the scratch so that’s why I recommend it.

4) Install Node.

5) Watch videos 12.1. and 12.2. of this excellent tutorial by Daniel Shiffman. He explains what
Node and Express are and how to get started with them. You are welcome to follow along, but
steps 6-10 will give you the same results.

6) Open the command line on your computer. On Mac, go to Applications/Utilities/Terminal.

On command line, type cd . Then in Finder, select "example_app" folder and drag it to command
line. It gives you the path to that folder automatically. Press enter.

Now you are operating inside that folder using command line. It should look like this:

7) On command line, type npm init . Answer the questions by typing to the command line and
pressing enter after each question. This creates a package.json file that makes the project easier
for others to manage and install. If confused, check the tutorial on step 5.

When done, type npm install express . This installs Express to this project folder (we only want it to
live in this folder, not everywhere on your computer).

8) Go to your empty server.js file. Add the following code:

Here we are telling the backend to:

-Use Express framework

Server with Node and Express

const express = require("express");
const app = express();
const server = app.listen(3000);
app.use(express.static("public"));
console.log("It works");

https://nodejs.org/en/
https://www.youtube.com/watch?v=2hhEOGXcCvg
https://lab.arts.ac.uk/uploads/images/gallery/2022-01/m6AHZYb5QY30pDsf-command-example.png

-Set our server to local port 3000

-Serve files that are in the folder called "public"

-Print "It works" when the server is running

9) Type node server.js on command line and press enter. This is how you tell Node to run a file
called server.js. It should print "It works" on the command line.

10) Double-check by going to address localhost:3000 on your browser. No errors? Good!

Now you should have a basic server running! But we don’t have anything that the server could
show. We’ll fix it next.

11) Go to your empty html file and add the following code:

12) Go to localhost:3000 and refresh. You should see a minimalist white page with the text My first
title!

If you get any errors, check your server.js and index.html files again. It's very easy to make a
spelling mistake!

13) Now we are only serving html. Let’s add the p5 library to serve some p5.js , ie. Javascript!

In your html file, add the following line of code in the <head> section of your html, after the
<title> line:

So the section now looks like:

HTML setup

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>My test project</title>
 </head>
 <body>
 <h1>My first title!</h1>
 </body>
</html>

Client Javascript setup

<script src="https://cdn.jsdelivr.net/npm/p5@1.4.0/lib/p5.js"></script>

This line of code gives us access to p5.js library in our project. Note that you can add other
Javascript libraries in a similar fashion, like ML5 for machine learning or Three.js for building 3D
visuals.

14) Our Javascript will live in the sketch.js file. First we need to reference that file in out HTML so
that there is a connection. You can think about this way: HTML file is like the frame of a painting,
and JS is what happens on the canvas of the painting. We need both!

In index.html , add the following line to the <body> section:

<script src="sketch.js"></script>

So that it looks like:

15) In the empty sketch.js , paste the following code:

Here, we are first drawing a grey background of 400 x 400 pixels. Then we add a pink rectangle
with red outline to the center of the canvas. For more p5.js help, see their reference.

<head>
 <meta charset="utf-8" />
 <title>My test project</title>
 <script src="https://cdn.jsdelivr.net/npm/p5@1.4.0/lib/p5.js"> </script>
</head>

<body>
 <h1>My first title!</h1>
 <script src="sketch.js"></script>
</body>

function setup() {
 createCanvas(400, 400);
}

function draw() {
 background(100);
 rectMode(CENTER);
 strokeWeight(3);
 stroke(255, 0, 0);
 fill(255, 192, 203);
 rect(100, 100, 200, 200);
}

https://learn.ml5js.org/#/
https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
https://p5js.org/reference/

16) Go to localhost:3000 and refresh the page. You should see text My first title!, grey background
and the red-pink rectangle. Your first web app with backend and frontend!

This is a local server and local project. Currently it only lives on your computer. In order to make a
public web app that anyone can access, you need to deploy it. There will be a tutorial for this later.
:)

Try to add a paragraph of text to your page. Guide

Try to add an image to your page. Guide

Try to change the color of the rectangle with a mouse click. Guide

Note

Next

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_default
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_images_trulli
https://p5js.org/reference/#/p5/mouseClicked

Tutorials

In Processing 4, you will see this error often BaseSrc: [avfvideosrc0] : Internal data stream error when
using the video library with cameras and a MAC. To see more about the capture function, please
see here.

Change this line cam = new Capture(this, cameras[0]); to "pipeline:avfvideosrc device-index=0"

How to fix "Internal data stream error" in
Processing 4

Error

How to fix (12/2024)

Full Code
import processing.video.*;

Capture cam;

void setup() {
 size(640, 480);

 String[] cameras = Capture.list();

 if (cameras.length == 0) {
 println("There are no cameras available for capture.");
 exit();
 } else {
 println("Available cameras:");
 for (int i = 0; i < cameras.length; i++) {
 println(cameras[i]);
 }

 // The camera can be initialized directly using an
 // element from the array returned by list():
 cam = new Capture(this, width, height, "pipeline:avfvideosrc device-index=0", 30);

https://processing.org/reference/libraries/video/Capture.html

 cam.start();
 }
}

void draw() {
 if (cam.available() == true) {
 cam.read();
 }
 image(cam, 0, 0);
 // The following does the same, and is faster when just drawing the image
 // without any additional resizing, transformations, or tint.
 //set(0, 0, cam);
}

Tutorials

A Command Line Interface is a way of interacting with a computer by issuing commands in the
form of lines of text. These commands interface with your operating system and hardware to
perform complex and intensive operations.

There is a large amount of useful Free and Open Source Software (FOSS) available online that does
not need or use a Graphical User Interface (GUI). Often this software works more efficiently with
the operating system or directly with the hardware and therefore can perform tasks such as image,
video or sound manipulation with ease.

Also because the CLI has a scripting language you can write scripts that automates certain tasks.
For example:

1. Downloading/uploading files from servers or web pages
2. Converting, cropping, trimming, splitting, combining video files
3. Converting, cropping, combining image files
4. Adding effects to, combining, trimming, splitting audio files
5. Mixing video & audio
6. Extracting video & audio
7. Adding text to video or images

Homebrew is a package manager for the macOS CLI. Once you install it on the CLI you can with
one line install a lot of software from it's repository.

1. Open Terminal
2. Copy and paste the following line:

3. Hit enter and it will install it for you.
4. To test if it was successful enter the following command:

Command Line Tools & Utilities

Installing CLI Tools
Homebrew - Package Manager for macOS

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew -v

FFMPEG

https://brew.sh/

FFMPEG is a powerful and flexible tool for performing any transformation tasks on video files.

The basics -
https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide#The_Basics

The homepage for SoX calls it "the Swiss Army knife of sound processing programs" and gives the
following description:

Good introduction and some examples - http://www.krisyu.org/blog/processing-

audio-files-sox.html

Install
brew install ffmpeg \
 --with-tools \
 --with-fdk-aac \
 --with-freetype \
 --with-fontconfig \
 --with-libass \
 --with-libvorbis \
 --with-libvpx \
 --with-opus \
 --with-x265

Example use / Tutorial

SoX

SoX is a cross-platform (Windows, Linux, MacOS X, etc.) command line utility
that can convert various formats of computer audio files in to other formats. It
can also apply various effects to these sound files, and, as an added bonus, SoX
can play and record audio files on most platforms.

“

Install
brew install sox

Example use / Tutorials

ImageMagick

https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide#The_Basics
http://www.krisyu.org/blog/processing-audio-files-sox.html
http://www.krisyu.org/blog/processing-audio-files-sox.html

ImageMagick is a powerful image manipulation tool.

A comprehensive list of example use - http://www.imagemagick.org/Usage/

Install
brew install imagemagick

Example use

http://www.imagemagick.org/Usage/

Tutorials

We are going to make a website using something called GitHub pages to make a website. Signing
up for a GitHub account and subsequently creating a GitHub pages URL will allow you to upload
your HTML, JS & CSS files online, so that you can access your website from anywhere.

GitHub is a website that stores what are called repositories. Repositories contain code, very much
just like a folder on your computer. Git is what is called a version control system and to us what it
means is that when you save files and commit them it will also save the previous version of your
files too. This is very popular with a lot of people in the world of tech, because if something goes
wrong, you can always go back to when it did work!

Go to https://github.com and sign up for an account, the form should be on the homepage. There
will be a few extra forms when you signup, you can skip through these.

Very important!!!1!!1!

The way that GitHub pages work is that in the end, your website will have the name of your
username in it (.github.io). For instance, if my username was 'jonny' my GitHub pages URL will be
https://jonny.github.io. So make sure you choose your username carefully!

Now we have to create a repository. On the left hand side there should be a link that says Create
a repository. Click this link and it should take you to this page:

Making a website for your HTML, JS, CSS or p5.js
files

Bit of background (Feel free to skip)

Step 1: Signing up for GitHub

Step 2: Creating a repository

https://github.com

Very important!!!1!!1!

This is where we need to set our repository name to equal exactly this structure: .github.io. So
again if my username is 'jonny' in the Repository name field I would insert 'jonny.github.io'.

Keep the button marked as 'Public' and everything else as default and click Create Repository

Now we need to upload our files to the Github repository. Hopefully after you created your
repository you should see the below page. What we want to do is click the link that says
uploading an existing file

Step 3: Uploading your code

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/0ElwDuSog2prPcvK-NEW_REPO.png

After that, if you drag your HTML, JS and CSS files (if you have them) onto the upload section, they
should upload to your repository. BUT! You need to 'commit the changes' for them to be saved.

This section is also relevant if you want to update your files too. Everytime you make changes to
the files, you have to 'commit them'. To the Git repository, that basically means, storing these new
files, committing them to memory.

Github makes this part quite easy. If you want to add a message you can do, but if not, all you
have to do is click Commit changes and your files will be stored in the git repository.

Step 4: Commiting your changes

Step 5: Viewing your website

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/wTIGzou3MBDsNU2B-CREATED_REPO.png
https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/DFN8tZa58yTia4N8-COMMITING_CODE.png

It may take a couple of minutes but, after you have uploaded your code, you should be able to see
your website running at .github.io (replacing with your actual username).

Congratulations!

To update files so that you make your newest files available on the internet, you need to follow the
same as Steps 3 & 4. The only difference is you now click that says Upload files which you can
find where, below

Everything in this section isn't necessary but it might help you out, to work faster and better!

We can download github's application to help speed up commiting files. You can download the
program here: https://desktop.github.com/. Once you've downloaded it, you need to log in and
set up your name and e-mail address. Then you will see all of your repositories on your account.

Step 6: Updating files

Optional steps

Step 7: Using a Git application

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/weMzu2PAeHvzI4nh-UPLOAD_FILES.png
https://desktop.github.com/

If you click your .github.io link and then the blue 'clone' button beneath it, it will download the
repository to your computer. But the more important part now is that from that folder it
downloaded, any changes you make it will watch them so that you can upload them back to
GitHub.

By default it will download the repository to this location: Documents/Github/REPO_NAME

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/jL8BxtGkXrPY24Uk-GITHUB_CLIENT.png

When you make changes to your files, if you check Github Desktop again, you should see that its
detected changes in your files.

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/LWwlMR1hMdZYcVie-REPO_LOCATION.png
https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/lMeKVZvPPQRJhA2j-FILE_CHANGES.png

After you commit them in Github Desktop, in the bottom left of the screen (similar to Step 4) you
can then publish the changes to your website

https://lab.arts.ac.uk/uploads/images/gallery/2019-06-Jun/nKfmPSCTOOd4qBEc-PUBLISH.png

Tutorials

If you're creating a piece of time-based work in p5.js you may want to capture the canvas as a
video. For example, if you have a generative design that evolves over time, or an animation
sequence. In this tutorial you will learn how to:

1. Download and include a custom library to your p5.js sketch
2. Program that library to access your camera as a capture card.

The first step we need to take is to download the custom library for this process. This library can be
found at the following Moodle link . Following that link will automatically download a src.zip
folder.

Once this folder is downloaded you can extract it to either your desktop or downloads folder
(anywhere you can easily find it). We are going to upload the files from this folder to our sketch
now.

1. There is a red arrow ">" button beneath the play and stop buttons. Click this to expand
the menu which shows all your sketch files. You will need to create a new folder called src
and upload all the seperate files from the src.zip you downloaded at the beginning.

2. Click on the "index.html" file in the side bar. We know need to add the following lines of code in
the head of our html file. You should see the default p5.js scripts. Feel free to add these
underneath.

How to export your p5.js as a video
How to Video Capture your p5.js Sketch

Custom Library

make sure you sign into Moodle to access the files.

make sure you turn off "auto-refresh" if you have it enabled as this could cause the video
capture to crash as you're programming

Your Sketch

If you do not create a folder called src and upload the files into it then you may encounter
errors with the next code block. You will see that my files are referened to the path "./src/"

https://moodle.arts.ac.uk/mod/resource/view.php?id=927191

3. Return to your "sketch.js" file where we can now add the following lines of code to the top
of sketch as a global variable. This will create a new CCapture object that we can store in
the variable "capture". We also set a captureLength variable. I set it to 60, which will
capture 1 second of material at 60 frames per second.

7. Go to your draw function and put this code at the beginning to start the capturing

This line of code is telling the sketch to start recording once the frameCount == 1.We do this so
that the program can run the first frame at setup before beginning to capture. If you wanted to
delay the recording by a certain amount of frames you can change the boolean check.

8. The last block of code in your draw function should be this. When your program reaches
this point it is going to check if the frameCount is still below the captureLength, and if that
is true, it will keep recording. The minute the frameCount is over the captureLength the
code block is going to evaluate with the else clause which will end the capture and save
the output.

 <script src = "./src/CCapture.js"> </script>
 <script src = "./src/webm-writer-0.2.0.js"></script>
 <script src = "./src/download.js"></script>

If you don't add these scripts to the head of the html file you will not be able to use the
functions. If you encounter errors that describe undefined functions with regard to the
capture code then check here first.

let capture = new CCapture({
 frameRate: 60,
 format: "webm",
});

let captureLength = 60;

 if (frameCount == 1) {
 capturer.start();
 }

 if (frameCount < captureLength) {
 capturer.capture(canvas);
 } else if (frameCount === captureLength) {

This is a link to a finished version if you're having problems with your own.
Video Exporter Template

 capturer.save();
 capturer.stop();
 }

The Draw Function in Full

function draw() {
 //start capturing
 if (frameCount == 1) {
 capturer.start();
 }

 //start coding

 background(220);

 //stop capturing
 if (frameCount < captureLength) {
 capturer.capture(canvas);
 } else if (frameCount === captureLength) {
 capturer.save();
 capturer.stop();
 }
}

https://editor.p5js.org/MichaelMizra/sketches/6ziokqX9X

During this workshop we introduce programming concepts using the web based creative coding
library p5.js (https://p5js.org), which is built using JavaScript.

Workshop: Introduction to Creative Coding

Workshop: Introduction to Creative Coding

Set up development environment
Understand the principles of locating points on screen
Drawing shapes
Understanding additive colour and using RGB colour space
Use browser-based tools for debugging and logging
Animate shape or colour using variables

During this series of workshops you will be using a library called p5.js to learn the fundamentals of
programming. The p5.js project is the most recent part of a complex history of open-source,
creative coding libraries going back to the early 2000s. It is supported by the Processing

Foundation, which is a not-for-profit organisation that emerged from the creative coding library
Processing.

From a technical perspective, p5.js is simply a JavaScript library. A library is a collection of code put
together to simplify a task or a collection of tasks. In this case p5.js provides a lot of functionality
that makes it easy to draw shapes, colours and handle user interaction within a web page.

This video from Daniel Shiffman is a good introduction to p5.js and the creative coding platforms
that preceded it:

https://player.vimeo.com/video/137979313

The code for this workshop is hosted on Github, which is a web-based repository for hosting and
versioning code.

Download the code and unzip it on your desktop.

Week 1 - Coordinates, shapes and colour

Outcomes

What is p5.js?

Supporting code

The code is also available to view directly on Github's website.

A p5.js project

http://p5js.org
https://processingfoundation.org/
https://processingfoundation.org/
http://processing.org/
https://player.vimeo.com/video/137979313
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/archive/master.zip
https://github.com/lcc-prototyping-lab/intro-to-programming-2017

In this exercise you will set up a p5.js project using the Atom text editor, then examine the
different files and run the code in a browser. The code to support this section is located in the
following directory and is available to view on Github:

p5.js project structure
What is a sketch?
What do the setup() and draw() functions do?
Adding your project to Atom
Using the browser debugging tools

Below is the structure of a p5.js project, which is essentially a web project made up of HTML and
JavaScript files.

p5.js is a JavaScript library designed for drawing to a web page. For JavaScript code to run in a
browser it needs to be included in a HTML file. The index.html file is the 'entry point' for the browser
to access our project code. Note the use of the <script> tag to import two JavaScript files (line 7 &
8).

The first JavaScript file (libraries/p5/p5.min.js) is the p5.js library containing a vast amount of code
that we can use without having to fully understand.

The second JavaScript file (sketch.js) is where we write our own code.

Below is the minimum required code for a p5.js sketch. This is simply an empty template for us to
start coding and will not produce any visual results.

To summarise, we now know that when the browser loads the index.html file, it will import the p5.js
library and the sketch.js file, and then execute the code we have written.

/00_empty_project/

Topics

A p5.js project

/00_empty_project/
 ├── index.html
 ├── libraries
 │ └── p5
 │ └── p5.min.js
 └── sketch.js

index.html

sketch.js

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/00_empty_project

Within the sketch we have two functions: setup() and draw() . p5.js calls/runs these functions for us
in a particular order. The setup function runs first and only once. The draw function then runs
repeatedly until the web page is closed.

sketch-setup-draw-01.png

When coding in any language and with any level of experience or expertise, you will almost always
encounter bugs. Writing code is often a trial and error process. Therefore, to be productive
programmers we need debug our code in order to identify and fix problems. This means using tools
to show us where errors in our code occur whilst it is being executed in its runtime environment.

p5.js is written in JavaScript and therefore the environment for running our code will be the
browser. There are developer tools built into all the major browsers that van be used for
debugging. For now, we recommend using Chrome so we are all using the same tools throughout
the workshop. Chrome has an easy to use and fully featured set of developer tools also known as
DevTools.

Take a look at Chrome's instructions on how to use the DevTools, in particular the
Accessing the DevTools section

A more involved introduction to developer tools from HTML5Rocks.
p5.js has a very good Field Guide to Debugging. It explains that debugging is a
creative problem solving task and stresses the importance of taking time to observing the
problem in order to understand it.

Add the 00_empty_project directory to Atom
Open index.html in a browser
Use the developer tools to see logged messages

In this exercise you will learn how to locate and target positions (i.e. pixels) on screen for drawing.
We will also learn how to use some basic functions of p5.js for making primitive shapes. The code
to support this section is located in the following directory and is available to view on Github:

Sketch - Why a sketch?

setup() and draw()

Debugging

Exercise

Coordinates and Shapes

/01_coordinates_and_shapes/

https://developer.chrome.com/devtools
http://p5js.org/tutorials/debugging.html
https://www.html5rocks.com/en/tutorials/developertools/part1/
http://staging.p5js.org/tutorials/debugging.html
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/01_coordinates_and_shapes

Comments
Using p5.js functions
Drawing some simple shapes
Locating points on the screen using Cartesian Coordinates

When writing code it is a good idea to sometimes write notes to yourself or other coders to explain
what the code is meant to be doing. The way we do this is by adding comments. Comments can be
added in two ways:

1. Single line comment
Using the double forward slash (//) at the beginning of the line instructs the browser to
ignore that entire line.

2. Block quotes
A forward slash and an asterisk (/*) will start the comment block and the reverse, an
asterisk and a forward slash (*/), will end it. The browser will ignore everything in
between, which can be multiple lines of notes.

You will see comments used in this exercise to ignore lines of code that are incomplete or contain
errors.

We will address functions in more detail later but here is a brief explanation. A function is multiple
lines of code that achieve a specific task. These are grouped together and given a name so that
they can be used again and again.

Later on we will write our own functions but, for now, we will use some functions that are provided
by the p5.js library.

createCanvas(800, 450)
This is called inside setup() to create a drawing area of a certain width and height – in this

Topics

Comments

// This rectangle is the button that starts the game.
rect(20, 100, 50, 100);

/*
This is a reminder that the code below is not complete yet.
It might be improved by taking this code and making it into
a function of its own.
*/

p5.js drawing functions

example the canvas is 800 pixels wide and 400 pixels high.

rect(50, 100, 200, 40)
This function draws a rectangle 50 pixels from the left of the canvas (x), 100 pixels from
the top (y). The width of the rectangle will be 200 pixels and the height will be 40 pixels.

To understand how to position elements on screen we need to go back to school. When drawing to
a screen on the majority of programming languages will use a version of the Cartesian Coordinate
system.

It was a system developed in the 17th Century by René Descartes for locating unique points on a
mathematical representation of a 2D plane using numerical pairs; e.g. (50, 100) , (251, 122) . This
revolutionised the fields of geometry and algebra centuries before the first computer screens.

For our purposes, the numerical pairs represent the number of pixels counting from left to right (x
) and top to bottom (y). For most, the diagram on the left will be familiar for plotting points on a
graph:

drawing-03.png
(image credit: https://processing.org/tutorials/pixels/)

The only difference between plotting points on a graph and on a screen using code is that (in
nearly all languages) we plot points on a screen starting from the top left corner rather than the
centre. You need an x value (horizontal position) and a y value (vertical position) in order to
specify a pixel position on screen.

In our code we call the following function:

The function accepts 4 arguments that define the position and shape of the rectangle:

Therefore the result of this will be the following:

cartesian.png

Within the p5.js library a [HTML canvas element](https://developer.mozilla.org/en-
US/docs/Web/API/Canvas_API) is created.

Cartesian Coordinates

Using coordinates in functions

rect(50, 100, 200, 40);

rect(x, y, width, height);

Each function in the library can take different arguments depending on its purpose. For example,
when defining a line we do not specify the width and height because lines are 1 dimensional (they
have zero or negligible height). Instead, a line is better defined by a start and end position on our
screen; two sets of Cartesian Coordinates:

Below is a diagram showing how this using the cartesian coordinates system.

drawing-06.png(image credit: https://processing.org/tutorials/pixels/)

You will not be expected to instinctively know what arguments to give to a particular function like
line() or rect() . When using libraries written by someone else, it is common for the authors to
provide online documentation describing each of the functions.

We know from our sketch that the rect() function accepts a minimum of 4 arguments: x, y, width
and height. Without being told, how do we know what these parameters mean? And what about
other functions like triangle() or quad() ?

To find out, we check the online documentation provided by the authors of the library or
programming language. You can search online for the function you are using and the
documentation will give you all the information you need to use it, typically with some useful
examples. We can check the reference for p5.js, and specifically the page that explains the line

function.

Add the 01_coordinates_and_shapes directory to Atom
Open index.html in a browser
Change the position, width and height of the rectangle
Draw a line
Draw an ellipse, triangle, or quad

The code to support this section is located in the following directory and is available to view on
Github:

line(x1, y1, x2, y2);

Documentation

Exercise

Colour

/02_colour_stroke_fill/

RGB Colour Space

https://p5js.org/reference
https://p5js.org/reference/#/p5/line
https://p5js.org/reference/#/p5/line
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/02_colour_stroke_fill/

When defining a colour in code, we need to describe it numerically using a 'colour space'. The most
common colour space used in computing is RGB (Red, Green, Blue). Those with experience of
graphical software such as Photoshop will be familiar with the colour selector that shows you the
RGB values as your move around the colour palette:

selector.jpg

An RGB colour can be understood by thinking of it as all possible colours in the visible spectrum
that can be made from combinations of red, green, and blue light. By defining the intensity of each
of the three colours that are mixed together, it's possible to pick from over 16 million different
colours. Arguably more than the human eye can see.

In practical terms, we specify the individual amounts of red, green, and blue using values between
0 and 255.

For example, this describes the colour red:

This describes green:

And this describes the orange colour used on this website:

rgb.jpg

In contrast to subtractive colour models, such as CMYK used for paints and print, the RGB colour
space is additive. When you mix the primary paints or pigments together the resulting colour will
become increasingly dark, working its way towards black. With colour displayed on a computer
monitor or mobile device, adding red, green and blue together will provide white.

In the p5.js library there are functions provided for controlling the colour of the fill and stroke of
shapes.

255, 0, 0 <---- RED

0, 255, 0 <---- GREEN

255, 152, 0 <---- ORANGE

Additive colour

If you want to know all there is to know about colour theory then read Joseph Alber's
amazing book, Interaction of Colors.

Using colour functions

http://ux.stackexchange.com/questions/30127/monitors-display-more-colors-than-human-eye-can-distinguish
https://www.amazon.co.uk/Interaction-Color-Josef-Albers/dp/0300179359

fill(r, g, b)
This determines the main body of colour inside a shape.
stroke(r, g, b)
This defines the colour of the line that surrounds the shape.

Here are some examples of giving three arguments (r,g and b) to the fill and stroke functions:

1. fill(255, 0, 0) // red shape fill
2. fill(255, 255, 0) // yellow shape fill
3. stroke(0, 0, 255) // blue outline
4. stroke(255, 0, 255) // magenta outline

Another feature of these functions is the ability to use them to define grayscale values. Passing a
single argument between 0 and 255 will result in a colour between black and white:

1. fill(0) // black shape fill
2. fill(255) // white shape fill
3. stroke(150) // grey outline

When calling these functions you are defining the fill and stroke colour for all the shapes you draw
after that line of code. So it is important to pay attention to the order in which you use them.

The code below draws a selection of shapes around the canvas. They are all coloured white, gray or
black. Your task is to add some colour to this situation.

Add the 02_colour_stroke_fill directory to Atom
Open index.html in a browser
Change the fill and stroke colour for each shape

The code to support this section is located in the following directory and is available to view on
Github:

p5.js defines some variables that we can use in our code about the properties of the sketch and
also user inputs (e.g. mouse and keyboard). We can use these to make our code easier to maintain,
more flexible, and to possibly add some basic interactions.

Grayscale

Order is important

Exercise

Simple Interaction and variables

/03_simple_interaction/

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/03_simple_interaction/

A variable is how we store useful values in code. The types of things we can store depends on the
programming language being used, but common examples are numbers and text.

Think of a variable as a container or box. The value is the thing inside the box, and the label on the
front of the box is the name we use to identify it.

In reality, the variable's container is a small section of memory on your computer.

After you've called the createCanvas(width, height) function, p5.js automatically stores the specified
dimensions as variables named width and height that can be used throughout your sketch. For
example, you can use those variables to calculate and draw something in the exact centre of the
canvas:

Special variables, such as mouseX and mouseY are made available by p5.js. These are extremely
useful if we want to make sketches that respond to the user's mouse input. These two variables
contain the x and y coordinates of the user's mouse at that precise moment. We can use
changing values to modify our drawing and create something more dynamic.

Add the 03_simple_interaction directory to Atom
Open index.html in a browser
Change the provided code so that a shape follows the mouse around the canvas

For the next workshop, I would like you to make a portrait (self or other) using what you've learned
from week 1. You should use the following functions and variables:

rect()
ellipse()
triangle()
fill()
stroke()
mouseX / mouseY

What is a variable?

var myNumber = 5;
var myText = "hello";

p5.js provided variables

rect(width/2, height/2, 20, 20);

Exercise

Week 1 Assignment

I would like you to use Codepen to submit your work. Codepen is an online code editor for web
based technologies (HTML, CSS & JavaScript) as well as a platform for sharing your code. I have
created a template for you to use that already includes the p5.js libraries:

http://codepen.io/pen?template=zKLpKw

Follow the link above and then edit the code in the JS panel. Click Save and you will have created a
'pen' with a unique URL (see below). Submit the Codepen URL to our Slack channel before
the next workshop.

Codepen - Create Pen from template

http://codepen.io
http://codepen.io/pen?template=zKLpKw

Workshop: Introduction to Creative Coding

Understand variables and how to use them
Understand functions and how to use them
Using conditional statements to control code flow
Using variables for animation
Using random numbers
Mapping values from one range to another

The code for this workshop is hosted on Github, which is a web-based repository for hosting and
versioning code.

Download the code and unzip it on your desktop.

During this workshop session we will be using the following project directories:

Firstly let's take another look at variables in a bit more detail. A variable is simply a way of storing
information in the computer's memory. Let's dive right in with an example...

Week 2 - Animation, conditionals & random
numbers

Outcomes

Supporting code

The code is also available to view directly on Github's website.

04_using_variables/
05_animation/
06_conditionals/
07_random/
08_random_recursive_tree/
09_map_weather_api/
10_map_hsb_colours/

Variables

https://github.com
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/archive/master.zip
https://github.com/lcc-prototyping-lab/intro-to-programming-2017

Let's break down the above statement:

1. var - This is how the browser knows you are 'declaring' a new variable
2. rectWidth - This is the name of the variable, which we can refer to later in our code. What

you call a variable is up to you but there are some conventions.
3. 5 - The value which we want to store in the computer's memory

Read more about variables in JavaScript

Now that our variable rectWidth is stored in memory, we can access it using its name to return the
stored value.

In this example, a new variable rectHeight is declared and assigned a value of 7. On the third line
both the previous variable values are retrieved from memory and multiplied using the multiply
operator (*). This is immediately stored in the rectArea variable before finally being logged to the
console.

Here is what happens line by line:

1. Store the number 5 in a variable named rectWidth
2. Store the number 7 in a variable named rectHeight
3. Multiply the values in rectWidth and rectHeight , storing the result in a variable named

rectArea
4. Log the value of rectArea

var rectWidth = 5;

Using variables
Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/04_using_variables/

var rectWidth = 5;
var rectHeight = 7;
var rectArea = rectWidth * rectHeight;
console.log(rectArea); // This will write 35 to the console.

Exercise

https://lab.arts.ac.uk/books/prototyping-lab/page/javascript#bkmrk-variables
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/04_using_variables/

Add the 04_using_variables directory to Atom
Open index.html in a browser
Open and look at the console in the browser's developer tools
Remove the comments at the beginning of line 20 and reload your browser

The code to support this section is located in the following directory and is available to view on
Github:

In this exercise a variable will is used to store, retrieve and increase a value. This value will
represent the position of a shape drawn to the canvas.

Here is a portion of the code extracted from the provided example:

As you can see a variable called positionX is declared and assigned a value of 0. Importantly this
variable is declared outside of the function where it is later used. The variable is declared in the
global scope (more on this later) making it accessible throughout the entire application (i.e.
globally).

Add the 05_animation directory to Atom

Animation using variables

/05_animation/

var positionX = 0;

/*
[code excluded]
*/

function draw(){
 // Set the background to black every frame
 background(0);

 // Draw a rectangle that moves along the X axis
 rect(positionX, height/2, 10, 10);

 // Increase the value stored in positionX
 positionX = positionX + 1;
}

Exercise

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/05_animation/

Open index.html in a browser
Use the conditional if statement to reset the square to position 0.
Increase the speed of the rectangle
Move the rectangle on the X and Y axis

The code to support this section is located in the following directory and is available to view on
Github:

A conditional statement is used to control which code is executed based on certain pre-determined
conditions. This process is one method of controlling the flow of our application.

Conditional statements are written in code using the if keyword. In fact, conditional statements
are often referred to as if statements. Below is an example of how a conditional statement is
formed using the if keyword:

By replacing the condition above with other statements we can start to control what parts of our
code are executed under which conditions.

You can think of this as a very simple flow diagram or decision tree. If condition A is TRUE then the
code block runs, however if it's FALSE the code is ignored.

Conditionals

/06_conditionals/

If statements

if (condition) {
 // code that runs if the condition is true
}

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/06_conditionals/
https://en.wikipedia.org/wiki/Control_flow

When writing a condition, commonly known as a conditional statement, the truth of the statement
is being evaluated or checked. In the following examples this happens by comparing two values.
These values can be variables, literal values or a combination of the two.

Here are some practical examples of if statements that use both variables and literal values.
Between each set of brackets is a statement comparing two values. Those comparisons will return
a value of true or false, which determines if the code within should be executed or ignored.

Is the statement true or false?

Literal values
Literal values are those that we write in our code literally.As opposed to variables that can
change, these values are written explicitly in our code and do not change. Here are some
examples:

"Hello, World"
12
3.141592

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#Literals

In conditional statements, a comparison operator sits between the two values and is used to
determine whether the statement is true or false. Below is a list of conditional statements using
different comparison operators.

A == B A equal to B

A != B A is not equal to B

A > B A is greater than B

A < B A is less than B

A >= B A is greater than or equal to B

A <= B A is less than or equal to B

If the statement is true then the code within the conditional will run. Here are some more practical
examples:

Let's break down one of the above conditions:

1. userName
A variable – as the word 'variable' suggests, we expect it may change.

if(userName == "bob"){
 // Any code in here will run when userName is equal to ('==') "bob"
}

if(durationHours > 12){
 // Any code in here will run when durationHours is greater than (`>`) 12
}

if(rectArea <= 35){
 // Any code in here will run when rectArea is less than OR equal to ('<=') 35
}

Comparison operators

value1 == value2
userName == "bob"
playerScore >= 10
"west" == windDirection
juneTemperature > mayTemperature

2. ==
A comparison operator checking for equality – checks if the value on the left is equal to
the value on the right.

3. "bob"
A string literal – written explicitly and therefore will not change.

Since variables can change value throughout the execution of code, the comparison to a static
value causes code to run only during particular conditions.

If variables are named well you can start to read through the logical steps of your application by
reading the code as human language:

Add the 06_conditionals directory to Atom
Open index.html in a browser
Modify the code inside the first conditional to make the ball bounce off the right side of
the canvas
Use another conditional to make the ball bounce off both sides of the canvas
Change the colour, size, speed of the ball when it bounces off the wall
Move up and down instead of left and right

The code to support this section is located in the following directory and is available to view on
Github:

Most programming languages provide functions for generating random numbers. This can be very
useful in providing some variations to deterministic behaviour of code.

In p5.js there is a function for generating a random number between a minimum and maximum
value:

if the userName is equal to "bob"
 then do something

Double (==) and single (=) equals signs
Always be sure to use the double equals sign in conditional if statements. Using the single
equals sign will change the value stored inside the variable.

Exercise

Using random numbers

/07_random/

random(min, max);

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/07_random/

The min and max arguments set the minimum and maximum values that can be returned from
that function.

You can also use a variable as one of the arguments:

The random() function can be used to set properties of shapes in our sketch such as position, size
or colour.

In the following example the positionX and positionY variables are assigned values that are half of
the width and half of the height of the canvas respectively. This will place the ellipse in the centre
of the canvas when the code runs.

Here is an example of how to use the random function to change the starting position of the ellipse
to a random position on the canvas on every execution of the code.

random(0, 10);
random(120, 180)
random(15, 22);

random(0, width);
random(0, height);

var positionX;
var positionY;

function setup() {
 createCanvas(800, 450);
 // Assign a value to the variables
 positionX = width/2;
 positionY = height/2;
}

function draw() {
 // Use the value within the variables.
 ellipse(positionX, positionY, 10, 10);
}

var positionX;
var positionY;

function setup() {

Add the 07_random directory to Atom
Open index.html in a browser
Change the X and Y positions of the ellipse using random() on every frame
Change another feature of the shape with random (size, colour, etc)

The code to support this section is located in the following directory and is available to view on
Github:

Add the 08_random_recursive_tree directory to Atom
Open index.html in a browser and you will see something similar to this:

 createCanvas(800, 450);
 // Assign a value to the variables
 positionX = random(0, width); // Random number between 0 & 800
 positionY = random(0, height); // Random number between 0 & 450
}

function draw() {
 // Use the value within the variables.
 ellipse(positionX, positionY, 10, 10);
}

The Nature of Code
For an in-depth look at how random numbers relate to other programming concepts such as
probability, evolutionary programming and the 1982 sci-fi classic Tron, take a look at Daniel
Shiffman's free online book The Nature of Code.

Exercise

Randomness and probability

/08_random_recursive_tree/

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/08_random_recursive_tree/
https://www.youtube.com/watch?v=Ng1U4LMZz7Y
http://natureofcode.com/book/introduction/

This is an example of using randomness and probability to produce organic forms. Take a look
through the code and you will see some lines such as this:

// Create a random numbers between 0 and 1
var r = random(0, 1.0);

// 98% chance this will happen
if (r > 0.02) {
 [code excluded here]
}
// 2% chance this will happen
else {
 [code excluded here]
}

You can see that by using random numbers and conditional statements you can quite easily create
systems that have interesting and unexpected results within the limits of probability.

This code also uses a very powerful technique called recursion, which is beyond the scope of this
workshop. Essentially the code is self-referential and therefore within very few lines of code can
create complex outputs.

The code to support this section is located in the following directory and is available to view on
Github:

A common programming task – particularly when visualising information – is to take a value that is
changing within one range and mapping that onto a different range.

As an example, let's think about visualising the current temperature (a changing value) by drawing
a thermostat.

We know that the value is going to be in this approximate range of 0 to 50 °C and the size of the
red thermostat indicator is a shape with a height between 0 and 200 pixels:

MIN MAX

°C 0 50

pixels 0 200

Let's assume we have retrieved the current temperature in degrees centigrade, for example
through a weather API.

If the temperature is 50°C, the height of the red bar would be 200 pixels; if the temperature is 0°C,
the height would be 0 pixels; and if the temperature is 25°C (half way point of the range), the
height would be 100 pixels (half the height).

Current Temp (°C) Height (pixels)

0 0

50 200

25 100

Mapping values

/09_map_weather_api/

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/09_map_weather_api/

Current Temp (°C) Height (pixels)

10 40

35 140

Within p5.js there the map function performs the calculations that translates one range onto
another. The map() function takes 5 arguments:

So using the example of the thermostat, we would convert the current temperature stored in a
variable called temperature using the following:

And here are some examples from above using literal integer values:

Add the 09_map_weather_api directory to Atom
Open index.html in a browser
Look through the code and find where the map() function is used
Change the city in the preload function to see the API results from other places

The code to support this section is located in the following directory and is available to view on
Github:

Using the RGB colour space we can produce as the specific colours we need. However, in order to
manipulate or generate colours, the RGB colour space doesn't offer the best tools. For this we can
use the HSB colour space or Hue, Saturation and Brightness. It is sometimes also known as as HSL
(lightness) or HSV (value).

Using the map function

map(value, fromMin, fromMax, toMin, toMax);

map(temperature, 0, 50, 0, 200);

map(25, 0, 50, 0, 200) // returns 100
map(10, 0, 50, 0, 200) // returns 40
map(35, 0, 50, 0, 200) // returns 140

Exercise

HSB Colour

/10_map_hsb_colours/

https://p5js.org/reference/#/p5/map
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/10_map_hsb_colours/

Within this model the hue defines the colour we see, which is the wavelength of light being
produced. The saturation defines how intense or vivid the colour is. The way the colour is
desaturated is by the addition of grey: 100% saturation means there is no grey and 0% saturation
will result in a medium grey. The brightness determines the amount of black or white that's mixed
with the hue.

Here are the RGB and HSB colour spaces visualised:

rgb-hsb.png

In p5.js you can change the colour space from RGB to HSB using the following.

The colorMode function can also take 3 more arguments:

These last 3 arguments represent the range of values we can pass as arguments into the colour
functions such as fill() and stroke() .

In RGB colour mode, the range is by default:

Red Green Blue

0 - 255 0 - 255 0 - 255

But in HSB mode, the hue is usually between 0 and 360 whilst the saturation and brightness are
between 0 and 100.

Hue Saturation Brightness

0 - 360 0 - 100 0 - 100

The saturation and brightness are essentially represented as a percentage (0 to 100%) of their
most extreme condition, which is the least saturated and the most bright.

But why is the hue value between 0 and 360? As mentioned the HSB colour is visualised as a
cylinder (or sometimes as a cone) and the hue is represented as the perimeter of the circle that
sits at the top of the 3D shape. Therefore the 360 is the angle in degrees around that circle.

Changing colour mode

colorMode(HSB);

colorMode(HSB, 360, 100, 100);

Image credit: www.runemadsen.com

Using the HSB colour space we can create easily create colour schemes that have a mathematical
relationship to each other. A simple example is choosing a particular hue and saturation and then
adjusting the brightness. However you can also choose selections of hue based on their
relationship around the 360 degrees of the colour wheel.

analogous-5905a98134b0e87c7822f38cf9af3d62_large.jpg
Analogous

complementaries-41a71e8df01c8b7e659808b1d03289f0_large.jpg
Complementary

triadic-9adb1731f0659e77584becced63e35ef_large.jpg
Triadic

tetradic-768b73622eb3aec919d28e8edcad2f51_large.jpg
Tetradic

All of these examples are from the Rune Madesen's lecture on colour as part of his Printing
Code module at ITP. The online resources from this are extremely useful.

In the provided example, the mouseX value is being mapped from one range (0 to width) onto
another (0 to 360):

MIN MAX

width of canvas 0 50

degrees of colour wheel 0 360

Exercise

http://printingcode.runemadsen.com/lecture-color/
http://printingcode.runemadsen.com/lecture-color/

Therefore as the mouse moves across the canvas the mapped value travels between 0 and 360.
This is then used to set the hue of the fill colour showing the full spectrum of colour.

Add the 10_map_hsb_colours directory to Atom
Open index.html in a browser
Explore different values for brightness and saturation
Create colour schemes with hues that have are related on the colour wheel, e.g.
analogous, triadic, etc.

Functions are used to define a process that can be constructed of one or more lines of code. They
are often used to organise and structure code by the intended outcome or behaviour.

Here are a few benefits to using functions:

1. Keep code organised
2. Make code easily reusable
3. Breaking down a task into smaller pieces (decomposition)
4. Making problems in the code easier to identify and troubleshoot (seperation of concerns)

Making use of functions is broken down into two parts. First, the function behaviour needs to be
defined, i.e. the code needs to be written. Secondly, the function needs to be called (also known as
'executed').

Below are 4 lines of code contained within a function that perform the task of calculating the area
of a shape. This is where the function is being defined.

var colour = map(mouseX, 0, width, 0, 360);
var columnWidth = width/3;

fill(colour, 100, 100);
rect(columnWidth*0, 0, columnWidth, height);

fill(colour, 80, 70);
rect(columnWidth*1, 0, columnWidth, height);

fill(colour, 60, 40);
rect(columnWidth*2, 0, columnWidth, height);

Functions

Using functions

Define the function behaviour

Let's break down the unfamiliar parts of the above code:

1. function
This is how the browser knows you are declaring a new function.

2. calculateArea()
'calculateArea' is the name of the function, which we can use to refer to later in our code.
What you call a function is up to you but there are some conventions.

3. { }
These are curly brackets or curly braces. They start and end the content of the function.
All code written between these two brackets is the behaviour of the function.

The above code will do nothing until we call the function elsewhere in our code.

A common use of a function is to make our code more reusable. One way of making our functions
more reusable is by adding parameters.

Create a sketch that includes:

one or more elements that changes over time.
one or more elements that is controlled by mouse or keyboard

function calculateArea() {
 var width = 5;
 var height = 7;
 var area = width * height;
 console.log(area);
}

Call the function

calculateArea(); // Logs 35

Function parameters

function calculateArea(width, height) {
 var area = width * height;
 console.log(area);
}

Assignment
Part 1

one or more element that is random() in nature

Work can again be submitted using Codepen. Here is the URL for the p5.js template:
http://codepen.io/pen?template=zKLpKw

Please submit the Codepen URL the day before our next workshop.

And here is a short guide on using Codepen:

Codepen - Create Pen from template

When you submit your URL I would like you to also submit a question about what we've been
covering (or have missed) over the last two weeks. For example:

What does a certain error message mean?
How do I create a colour with an alpha channel?
Are there any other colorModes?
What is the highest framerate?

Part 2

http://codepen.io/pen?template=zKLpKw

Workshop: Introduction to Creative Coding

Iteration using while and for loops
Understand and using arrays
Using loops and arrays together
Understanding and using JavaScript objects
Understanding how colour data is stored in pixel arrays
Accessing the webcam

The code for this workshop is hosted on Github, which is a web-based repository for hosting and
versioning code.

Download the code and unzip it on your desktop.

During this workshop session we will be using the following project directories:

So far during this series of workshops testing your code has involved opening the index.html file in
your browser, which results in an absolute file path in the browser address bar (see below). You can
see this indicated by the file:// protocol followed by the absolute file path to the index.html file:

Week 3 - Iteration, arrays, objects and pixel
arrays

Outcomes

Supporting code

The code is also available to view directly on Github's website.

11_iteration_and_loops/
12_iteration_02/
13_loops_and_arrays/
14_pixel_array/
15_image_pixel_array/
16_webcam_capture/

Local web server

https://github.com
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/archive/master.zip
https://github.com/lcc-prototyping-lab/intro-to-programming-2017

For some examples you will need to run a local HTTP web server that serves the files in a project. If
you have Node.js already installed you can run the following command to install an HTTP web
server:

If you receive an error from the above command it's likely that you do not have Node.js installed. In
which case visit the Node.js homepage and download/install the LTS version and repeat the
command above.

Once you have installed the HTTP web server you will need to change directory (cd) into the
project directory on the command line and run the server:

sudo npm install -g http-server

https://nodejs.org/en/
https://nodejs.org/en/

If successful you will see messages in the command line similar to this:

You can then copy and paste one of the URLs into you browser:

cd ~/Desktop/intro-to-programming-2017/15_image_pixel_array/
http-server

Sometimes it is necessary to repeat a task over and over on the same data in order to achieve a
desired outcome. This is known as an iterative process and each step is an iteration.

The most common application for iteration is to create, check, or modify a collection of variables.

In the previous workshop, we were introduced to the idea of conditionals. We saw that an if
statement can be used to branch code, but this is only performed once.

If we want to perform a conditional operation repeatedly, we need to use a different statement –
the while loop.

The example below will draw six circles onto the canvas. Note that the circles are identical, apart
from the x coordinate.

We can simplify this code by using a while loop.

Iteration: while and for loops
Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/11_iteration_and_loops/
/12_iteration_02/

function setup() {
 createCanvas(400, 300);
}

function draw() {
 background(128);
 ellipse(50, 225, 20, 20);
 ellipse(100, 225, 20, 20);
 ellipse(150, 225, 20, 20);
 ellipse(200, 225, 20, 20);
 ellipse(250, 225, 20, 20);
 ellipse(300, 225, 20, 20);
 ellipse(350, 225, 20, 20);
}

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/11_iteration_and_loops/

What's happening in the above example line-by-line:

1. var x = 50;
Here we create a temporary variable to help us iterate. In this case an integer, initially set
to 50.

2. while (x <= 350) {
This starts the while loop. As long as the condition inside the parentheses remains true,
the code that follows the curly brace will be repeatedly executed (forever!)

3. ellipse(x, 225, 20, 20);
We draw a circle. The y-position, height, and width are identical for each; the x-positon is
set using the current value of our temporary variable.

4. x = x + 50;
The value of the temporary variable is increased by 50.

As soon as the condition inside the parentheses returns false, the while loop exits and code
execution continues.

Although this is a very common code pattern, it's unusual to see while loops actually used in code.
This is because most programming languages provide us with a more useful variant – the for loop.

A for loop is written slightly differently from a while loop. The parentheses contain three
statements separated by semicolons, rather than a simple test.

function setup() {
 createCanvas(400, 300);
}

function draw() {
 background(128);
 var x = 50;
 while (x <= 350) {
 ellipse(x, 225, 20, 20);
 x = x + 50;
 }
}

function setup() {
 createCanvas(400, 300);
}

function draw() {
 background(128);
 for (var x = 50; x <= 350; x = x + 50) {

What's happening inside the parentheses:

1. for (var x = 50 ; x <= 350; x = x + 50) {
A temporary variable is declared and initialised in the first statement.

2. for (var x = 50; x <= 350 ; x = x + 50) {
The second statement contains the condition that is checked. If this returns false the loop
exits.

3. for (var x = 50; x <= 350; x = x + 50) {
The final statement contains code that is to be executed after each successful loop.

Even in these basic examples, it's clear to see that loops help us avoid repetition and reduce the
number of lines of code we write.

Add the 12_iteration_02/ directory to Atom
Open index.html in a browser
Change the RGBA values of the pixels inside the nested for loop
Try using the random() function to set the colour values
Try using the x and y variables to set the colour values

Arrays are essentially ordered lists of things and each item in that list can be accessed individually.
The array itself is a type of variable and it stores other variables inside. The stored variables can be
used in the same way as you use any other variable.

Here is a simple array:

What's important about an array is the order of the items within. To access any individual item of
data stored inside the variable, we need to reference the item's position, commonly referred to as
the array index. Crucially, the index of an array starts at zero:

And therefore the index of the last item in the array would be one less than total number of items.
In our example above we have 4 items, so the final item is accessed using the index 3:

 ellipse(x, 225, 20, 20);
 }
}

Exercise

JavaScript Arrays

var sizes = [20, 350, 80, 210];

console.log(sizes[0]); // logs: 20

JavaScript arrays are particularly useful since you can store any type of data inside, including
integers, strings, objects and—perhaps confusingly—other arrays. Here is an example of an array
containing a list of strings:

And, as above, we can access the strings using the array variable technicians and counting along
the list starting from zero:

Try this for yourself using this CodePen.

When we have only a few items in our arrays, it is not a lot of additional code to access each of
them explicitly using their index:

But even this is repeating code unnecessarily. And when we start to hold hundreds or thousands of
items in our array, it would become unmanageable to write out the code above.

To unleash the full potential of arrays, they can be combined with looping structures such as for
loops. As we have seen already, the for loop can be used to run a piece of code a number of times,
incrementing an index variable on each execution:

console.log(sizes[3]); // logs: 210

var technicians = ["Delia", "Will", "Adam", "Gareth", "Tom"];

console.log(technicians[0]); // "Delia"
console.log(technicians[2]); // "Adam"
console.log(technicians[4]); // "Tom"

Loops and arrays
Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/13_loops_and_arrays/

ellipse(x, y, sizes[0]);
ellipse(x, y, sizes[1]);
ellipse(x, y, sizes[2]);
ellipse(x, y, sizes[3]);

https://codepen.io/garethfoote/pen/WXyMgz?editors=0011
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/13_loops_and_arrays/

A further useful feature of arrays is that they have an internal property that contains the current
length of the array:

The length property can be used within our for loop to determine how many times the loop runs
the code before stopping. In the case of our sizes array above, the loop would continue to execute
as long as the i variable is less than (<) the number of items in the array.

This is a very common design pattern.

What is happening here?

1. The variable i is set as 0
2. The statement i < sizes.length is tested
3. If the condition is true the code inside runs
4. ...and the variable i is increased by 1
5. Go back to point 2 and repeat until false

The code would run 4 times and log 0, 1, 2 and 3.

Now we have a loop that runs as many times as there are items in the array. Crucially, inside that
loop, the variable i is incremented by 1. Each time it increments by 1 we can use it to access the
value in the array at that index:

If we recall that the first item in an array uses the index zero, we can see why our i variable is
initialised as 0 rather than 1.

Within our for loop we are now running code that accesses each of the items in the array in the
correct order.

for(var i = 0; i < 4; i++){
 console.log(i);
}

var sizes = [20, 350, 80, 210];
console.log(sizes.length); // logs 4

for(var i = 0; i < sizes.length; i++){
 console.log(i);
}

for(var i = 0; i < sizes.length; i++){
 console.log(sizes[i]);
}

See this code executed in CodePen.

In JavaScript most things you encounter are actually objects. The strings, arrays and even functions
are objects at the most basic level. This is because they can all contain properties and functions
inside them.

Here, for example, the variable message has a property called length that returns the length of the
string:

More examples on CodePen.

These are objects within internal properties and functions that are provided by the JavaScript
engine inside the browser. We do not need write the code for these objects as it already exists.

However, creating your own objects is a very handy way to encapsulate related functions and
variables, and also act as data containers. We can also use this technique to model things in a
more helpful way.

Let take a look at the variables needed to draw a circle and then how we would move those
variables inside an object. Here we define three variables:

And here are the same three variables inside an object:

The first thing to note is that the object starts and ends with curly braces; the same way that we
start and end functions and if statements.

JavaScript Objects

var message1 = "what is an object";
console.log(message1.length); // 15

var x = 50;
var y = 100;
var size = 20;
ellipse(x, y, size);

var circle = {
 x : 50,
 y : 100,
 size : 20
};

https://codepen.io/garethfoote/pen/EbREPj?editors=0011
https://codepen.io/garethfoote/pen/aVKENV?editors=0011

Pay careful attention to the differences between declaring variables inside and outside of an object.
Variables stored inside objects are called properties and each property has a value. The major
difference in syntax is that properties and values are separated by a colon (:) instead of an equals
sign (=).

And each of the property/value pairs are separated by a comma (,), not a semi-colon (;). The
exception to this is rule is the last pair for which the comma is optional

So now that the data that defines our circle is contained within an object how do we access that
data? To access a property of an object the dot syntax is used. For example to access the x value:

So to rewrite our code above using an object:

See a simple example of this on CodePen.

x : 50, // Note the colon ':' separator...

x : 50, // ...and each pair separated by a comma
y : 100,
size : 20 // except the last, which is optional

circle.x

var circle = {
 x : 50,
 y : 100,
 size : 20
};

ellipse(circle.x, circle.y, circle.size);

Object Oriented Programming
A more advanced use of objects is to create templates of things that we want to represent in
our code. These templates or models can be used to create different permutations of the
same type. This is called abstraction and is one of the fundamentals of object-oriented
programming (OOP). Mozilla Developer Network has a very good section about objects

and a really interesting page introducing OOP and how to implement it using

JavaScript objects.

https://codepen.io/garethfoote/pen/bYKaXB
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS

Here is an example on CodePen of the above circle sketch created using a constructor
function. This is a simple example of using Object Oriented Programming in JavaScript.

Previously we have discussed that our p5.js canvas is made up of individual pixels. Each of them
can be located using an X coordinate between 0 and the width and a Y value between 0 and the
height. Also known as Cartesian coordinates.

So how many pixels are there in a canvas of 600 pixels in width and 500 pixels in height:

We have also discussed that each pixel is made up of three values: red, green and blue. Well, there
is actually a fourth value, which we haven't discussed in a great detail called alpha. This sets the
transparency value of the pixel. So for every pixel on the p5.js/HTML canvas there are 4 pieces of
information:

So in total for our canvas of 600 x 500 we have this many pieces of information:

Pixel array
Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/14_pixel_array/

600 x 500 = 300000 pixels

red, green, blue, alpha

300000 (pixels) x 4 (colour value) = 1200000

https://codepen.io/garethfoote/pen/vWaBQK
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS#Constructors_and_object_instances
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/14_pixel_array/

All of this information is stored in one large linear array, which we can easily access and
manipulate. However arrays are simply lists so they do not have a concept of which index relates
to which X and Y coordinate on our screen.

If we want to access a particular pixel we do not refer to it as, for example, the 29th pixel (the last
pixel in our example above). We are more likely to reference it using the X and Y coordinates. So
how do we get from an X and Y coordinate to access and manipulate the 4 colour values within the
pixel array?

In the image above the red dot represents a pixel on screen that we want to target in the pixel
array to access or change the 4 colour values.

If we were to count the grey boxes you can see that before we reach the red dot we have 2 full
rows, which equates to (y * width) . Then we count in (or add) x positions. The formula to calculate
this for any x and y value is therefore:

So far so good. However now we know that the number of the pixel in the canvas but for every
pixel there are 4 values in the array. Therefore to calculate the first of four positions in the array
that contains the RGBA values for our pixel we simply multiple by 4. In our above example we have
calculated the pixel position to be the 16th:

x + (y * width)

16 (pixel position) * 4 (colour values) = 64 (array index)

So now we know that the four positions in the array that represent our pixel are 64, 65, 66 and 67.
We can therefore write the following code to manually set the colour of that pixel:

But that is not very reusable code and we would have to manually calculate the index again every
time we wanted to address a new pixel. What would be much better is to put all of those
calculations into variables so we can simply change the X & Y value with ease:

function draw() {
 loadPixels();

 pixels[64] = 255; // red
 pixels[65] = 255; // green
 pixels[66] = 255; // blue
 pixels[67] = 255; // alpha

 updatePixels();
}

Using the above code we can address a particular pixel and then access the colours within the pixel
array.

Try changing the X and Y values on this CodePen. You may need to look closely or zoom in to
see the single coloured pixel.

So we now can access individual pixels based on their X & Y coordinates, what if we wanted to
modify all the pixels. We can do this by using a nested for loop to iterate along every pixel on the
X and Y axis. A nested for loop is one loop within another:

I've increased the size of the canvas to 60 pixels in width by 50 pixels in height so we have a
slightly larger area to spot our pixel in.

function draw() {
 loadPixels();

 var x = 40;
 var y = 20;
 var index = (x + (y * width)) * 4;

 pixels[index] = 255; // red
 pixels[index+1] = 255; // green
 pixels[index+2] = 255; // blue
 pixels[index+3] = 255; // alpha

 updatePixels();
}

// Loop through every pixel on the X axis...
for (var x = 0; x < width; x++) {
 // ...and for each X, loop through every pixels on the Y axis
 for (var y = 0; y < height; y++) {
 // Every (x, y) coordinate is looped here:
 var index = (x + y * width) * 4;
 pixels[index] = 255; // red
 pixels[index+1] = 0; // green
 pixels[index+2] = 0; // blue
 pixels[index+3] = 255; // alpha
 }
}

https://codepen.io/garethfoote/pen/POadJM?editors=0010

In this example above every pixel is set to full red, no green, no blue and full transparency.

Add the 12_pixel_array directory to Atom
Open index.html in a browser
Change the RGBA values of the pixels inside the nested for loop
Try using the random() function to set the colour values
Try using the x and y variables to set the colour values

So far we have been manipulating the pixel colour values of an empty canvas; or more precisely a
canvas full of a single colour. The exact same process is possible but instead of manipulating an
empty canvas we can manipulate image data loaded in from an external file.

The data that represents an image is also made up of individual pixels (this is called a raster

graphic and therefore within p5.js we access the image pixel data in the exact same way as we
have already been accessing pixels in an array. Here is an example of this using a loaded image:

Exercise

Image pixel data
Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/15_image_pixel_array/

Use a local web server
p5.js cannot access the image pixel data from an image that is loaded directly from the file
system. Therefore you will need to install and run a HTTP server in order to complete the
next exercise. To set up an local web server follow these instructions.

var img;

function preload() {
 img = loadImage("images/maxernst.jpg");
}

function mouseDragged(){

https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Raster_graphics
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/15_image_pixel_array/
https://lab.arts.ac.uk/books/prototyping-lab/page/web-architecture#bkmrk-exercise%3A-create-a-l

You will notice a new function being used called preload() . This is a handy function provided by
p5.js that ensures that images or external data such as API data are finished loading before calling
the setup() and draw() functions:

Inside the preload function we give a relative path as an argument to the loadImage() function. The
results of this are stored in a global variable img .

 var index = (mouseX + mouseY * width)*4;

 img.loadPixels();
 var r = img.pixels[index];
 var g = img.pixels[index+1];
 var b = img.pixels[index+2];
 var a = img.pixels[index+3];

 fill(r, g, b, a);
 ellipse(mouseX, mouseY, 40, 40);
}

Then later in our draw() function we can access the pixel array as a property of the img object. We
do this using the dot syntax. Here I am setting the first pixels colour to green:

Add the 13_pixel_array directory to Atom
Set up a local web server and run it within the 13_pixel_array directory.
Open the URL provided by the local web server in a browser.
Click and drag the mouse around the canvas to see the pixel colours being rendered in
circles
Uncomment the lines in the nested for loop and play with the rgba values:

The code to support this section is located in the following directory and is available to view on
Github:

Using p5.js accessing the webcam is quite straightforward. It takes just a few lines of code:

var img;

function preload() {
 img = loadImage("images/maxernst.jpg");
}

img.pixel[0] = 0;
img.pixel[1] = 255;
img.pixel[2] = 0;

Exercise

img.pixels[index] = r;
img.pixels[index+1] = g;
img.pixels[index+2] = b;
img.pixels[index+3] = a;

Webcam capturing

/16_webcam_capture/

Using a local web server
This is another instance when you won't be able to run this sketch directly from your
filesystem, you will need a local web server running. To set up an local web server follow

these instructions.

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/16_webcam_capture/
https://lab.arts.ac.uk/books/prototyping-lab/page/web-architecture#bkmrk-exercise%3A-create-a-l
https://lab.arts.ac.uk/books/prototyping-lab/page/web-architecture#bkmrk-exercise%3A-create-a-l

Behind the scenes the createCapture() function does a few clever things. Firstly it causes the
browser to ask the user if they want their camera to be opened and used. This is a security
provision to ensure nefarious programmers cannot access webcams without permission. Secondly
it creates a HTML Video element in the browser and places it next to our p5.js canvas. We can then
use the image data from inside that HTML Video object to draw into our canvas.

See this in action on CodePen.

However this leaves us with two copies of the webcam video. That is why we call capture.hide() in
all the following examples.

What is extremely useful about this object stored in the capture variable is that the pixels inside it
can be treated exactly the same as the pixel array and image pixel array examples.

var capture;

function setup() {
 createCanvas(400, 300);
 pixelDensity(1);

 // Create video capture object.
 capture = createCapture(VIDEO);
 capture.size(width, height);
}

function draw() {
 clear();
 // Draw capture to the canvas.
 image(capture, 0, 0, width, height);
}

clear();
capture.loadPixels();
for (var x = 0; x < width; x++) {
 for (var y = 0; y < height; y++) {
 // Get the pixel at x and y position
 var index = (x + y * width) * 4;
 capture.pixels[index] = 255; // red
 // capture.pixels[index+1] = 0; // green
 // capture.pixels[index+2] = 0; // blue
 // capture.pixels[index+3] = 0; // alpha

https://codepen.io/garethfoote/pen/YEvRzN?editors=0010

In this example above every pixels has had it's red value cranked up to maximum giving the
captured image a distinctly red tint.

Within the exercise code you will also find a call to the saveCanvas() function being used within the
keyPressed() function:

This 4 lines of code allows the webcam image to be saved and downloaded as a JPG when the
return key is pressed.

Add the 16_webcam_capture directory to Atom
Set up a local web server and run it within the 16_webcam_capture directory.
Open the URL provided by the local web server in a browser.
Hit the enter key to download a frame of the webcam video
Uncomment the lines in the nested for loop and play with the rgba values:

 }
}
capture.updatePixels();
image(capture, 0, 0, width, height);

function keyPressed(){
 if (keyCode == RETURN) {
 saveCanvas("webcam", "jpg");
 }
}

Exercise

capture.pixels[index] = 255; // red
capture.pixels[index+1] = 255; // green
capture.pixels[index+2] = 255; // blue
capture.pixels[index+3] = 255; // alpha

Workshop: Introduction to Creative Coding

Independently researching new features of p5.js using the documentation
Using inputs to control behaviour of your sketch
Understanding the concept of web-based APIs and basic use
In groups create a sketch that uses either at least one input (learnt today) or APIs to
create an interactive sketch

So far during this series of workshops testing your code has involved opening the index.html file in
your browser, which results in an absolute file path in the browser address bar (see below). You can
see this indicated by the file:// protocol followed by the absolute file path to the index.html file:

Week 4 - Other inputs and APIs

Outcomes

Local web server

https://p5js.org/reference/

For some examples you will need to run a local HTTP web server that serves the files in a project. If
you have Node.js already installed you can run the following command to install an HTTP web
server:

If you receive an error from the above command it's likely that you do not have Node.js installed. In
which case visit the Node.js homepage and download/install the LTS version and repeat the
command above.

Once you have installed the HTTP web server you will need to change directory (cd) into the
project directory on the command line and run the server:

sudo npm install -g http-server

https://nodejs.org/en/
https://nodejs.org/en/

If successful you will see messages in the command line similar to this:

You can then copy and paste one of the URLs into you browser:

cd ~/Desktop/intro-to-programming-2017/15_image_pixel_array/
http-server

So far you have used the input for mouse position to affect the visual output in your sketch.

There are a range of other inputs we can use to create dynamic / interactive sketches:

Click
Keyboard
Touch / Drag
Rotation

Experiment with these other inputs using the p5.js reference. Search for ‘Events’ section in the
reference.

Here are a list of APIs you can use for this example:

APIs

Blockchain (Documentation):
https://blockchain.info/latestblock

Most Recent Earthquakes:
http://apis.is/earthquake/is

Icelandic Open Data (Documentation):

1. http://apis.is/cyclecounter

2. http://apis.is/horses?id=IS1987187700

3. http://apis.is/ship?search=engey

Other Inputs

APIs
Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/19_api_playground/

OPEN

https://p5js.org/reference/
https://blockchain.info/
https://blockchain.info/latestblock
http://apis.is/earthquake/is
http://apis.is/
http://apis.is/cyclecounter
http://apis.is/horses?id=IS1987187700
http://apis.is/ship?search=engey
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/11_iteration_and_loops/

MusicBrainz:
http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-

a69a8278c7da?inc=aliases&fmt=json

Exchange Rates (Documentation):
https://api.fixer.io/latest?symbols=USD,GBP

Weather (Documentation):
http://api.apixu.com/v1/current.json?key=YOUR_API_KEY_HERE&q=London

Population Statistics (Documentation):
http://inqstatsapi.inqubu.com/?api_key=YOUR_API_KEY_HERE

&countries=us&data=population&years=1980:1990

NASA Near Eath Objects (Documentation):
https://api.nasa.gov/neo/rest/v1/feed?start_date=2016-12-24&end_date=2016-

12-25&api_key=YOUR_API_KEY_HERE

REQUIRES API KEY

http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json
http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json
http://fixer.io/
https://api.fixer.io/latest?symbols=USD,GBP
https://www.apixu.com/doc/current.aspx
http://api.apixu.com/v1/current.json?key=YOUR_API_KEY_HERE&q=London
http://blog.inqubu.com/inqstats-open-api-published-to-get-demographic-data
http://inqstatsapi.inqubu.com/?api_key=YOUR_API_KEY_HERE&countries=us&data=population&years=1980:1990
http://inqstatsapi.inqubu.com/?api_key=YOUR_API_KEY_HERE&countries=us&data=population&years=1980:1990
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/neo/rest/v1/feed?start_date=2016-12-24&end_date=2016-12-25&api_key=YOUR_API_KEY_HERE
https://api.nasa.gov/neo/rest/v1/feed?start_date=2016-12-24&end_date=2016-12-25&api_key=YOUR_API_KEY_HERE

Other workshops

Other workshops

The slides for Introduction to Creative Coding are attached as a file on the left of this page!

Creative Coding 101

A collection of resources which outline ways of thinking in creative computation, computer science,
and associated areas.

Concepts

Concepts

if else elseif
boolean conditions and comparison operators ==
logical operators && ||

for while
arrays

https://addyosmani.com/resources/essentialjsdesignpatterns/book/

Planning
Fundamentals
Variables: Declaration, Assignment, Reassignment

Typing: Strings, Integers/Floats, Boolean

Arithmetic - + * /

Conditional Logic / Control flow

Iteration

Functions

Other concepts
Coordinates (Cartesian/Polar)

Colour space / Additive Colour / RGBA / HSB

Pseudocode / Debugging / Logging

Data structures - JSON / XML / CSV

Objects

Pseudoclassical and other patterns (e.g. IIFE)

Ternary statements

https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://www.google.co.uk/search?espv=2&q=pseudoclassical+javascript&oq=pseudo+classical+jav&gs_l=serp.3.0.0i22i10i30k1.2884.3147.0.4610.4.3.0.0.0.0.114.219.2j1.3.0....0...1c.1.64.serp..1.3.217...0.o6Ro63UYl5U
http://benalman.com/news/2010/11/immediately-invoked-function-expression/

Development environment - Atom + plugins/extensions

Math functions - random, sine

map()

P5JS
pixel arrays

stroke, fill, other functions

library globals

Concepts

Paul-Rand.jpg Eye-Bee-M-Poster.jpg

Obj.Id_74621_web_hoch.jpg Bauhaus-Anni+Albers,+Tapestry,+1926-1964.jpg

josef-albers-never-before-f.jpg
Joseph Albers

joseph-albers-homage-to-square-2.jpg
Joseph Albers

Swiss 1 Swiss 2

15th century experiments in Linear Perspective.

linear-perspective-header_0328p_duomo6_b.jpgEntrega_de_las_llaves_a_San_Pedro_(Perugino).jpgvase-in-perspective.jpg

Systems in art & design

Paul Rand

Another kind of definition is that design is a system of relationships between
all of the aspects of the problem, which means the relationship between you and
the piece of canvas, you and the eraser, you and the pen. The relationship
between the elements proportions, which mean the relationship of sizes. I can
go on all day. Paul Rand

“

Bauhaus

Swiss Style

Linear Perspective

Sol Lewitt - Instructions for making art

In conceptual art the idea or concept is the most important aspect of the work.
When an artist uses a conceptual form of art, it means that all of the planning
and decisions are made beforehand and the execution is a perfunctory affair.
The idea becomes a machine that makes the art. Sol LeWitt

“

Variations of Incomplete Open Cubes sol-lewitt-instructions-1972.jpg

Music-of-changes-4-1.gif 34e9e9a994e5cda59d9940d6d0ce0d6c.png

nt6-cd7b343bfb9b34d15d9352474098e622_large.jpg stand01.jpg

re2-c916bff9ad2a52de3c87bba89eee02eb_large.jpg Noll_Fig72.jpg

cybernetic-serendipity-poster-web.jpg

bild.jpg
Gordon Pasque - Colloquy of Mobiles

1. Catalogue

2. Critique

John Cage - Music of Changes and Chance

Kerry Strand - California Computer Products Inc

John Albers - The Responsive Eye (1965) & Michael Noll

an intellectual and active creative partner that, when fully exploited, could be
used to produce wholly new forms and possible new aesthetic experiences“

Cybernetic Serendipity - Institute of Contemporary Art
(1968)

Exemplary for the appeal of the great promises made early in the computer age,
Cybernetic Serendipity epitomizes the dilemma much of media art faces today:
its complicated relationship with the socio-economic environment, the difficulty
of engaging with its own historicity and transcending mere techno-fetishism, and
the all-too-familiar sense of a naïve, unbridled optimism with its inevitable
pitfalls and false dawns. link

“

“

http://cyberneticserendipity.com/cybernetic_serendipity.pdf
http://www.rainerusselmann.net/2008/12/dilemma-of-media-art-cybernetic.html?m=1
http://www.rainerusselmann.net/2008/12/dilemma-of-media-art-cybernetic.html?m=1

Section on Art and Cybernetics from 1950s in Europe and the US.

141013_r25584_rd.jpg

The Planning Machine

Software-s.jpg

1. http://www.tate.org.uk/research/publications/tate-papers/05/all-systems-go-recovering-
jack-burnhams-systems-aesthetics

2. https://monoskop.org/images/0/03/Burnham_Jack_1968_Systems_Esthetics_Artforum.pdf
3. http://www.tate.org.uk/whats-on/tate-modern/exhibition/open-systems

The utilization of scientific know-how, however, did not simply lead to a re-
valorization of the art object and the materials that could be made of it. On the
contrary, the integration of technology engendered a growing interest that went
beyond a strictly object-oriented approach toward practices that focus on
process, ideas and (inter-) actions. Concomitant with experiments in
participation and interaction, with happenings, performances, land art and
conceptual art, media art is often regarded as a conclusion of the de-
materialization of the art object. link

Digital Culture by Charlie Gere

Project Cybersyn

Jack Burnham - System Esthetics

Art that is transactional in that they deal with underlying structures of
communication and energy exchange“

https://www.newyorker.com/magazine/2014/10/13/planning-machine
http://www.rainerusselmann.net/2008/12/dilemma-of-media-art-cybernetic.html?m=1

Concepts

This is an informal workshop experimenting with a method of generating 3D meshes from 2D
images based on the RGB colour space and making this content viewable in low-fi VR headsets.

I have been making a piece of software using openFrameworks to explore creating generative 3D
meshes and also the challenge of quickly and easily getting 3D models into a lo-fi VR environment.
During the workshop I will introduce you to the some basic concepts of 3D modelling and explain
how this software can be used as a tool to explain generative design. Below is a screenshot of the
software:

Screenshot-2017-06-15-09.29.44.pngCode available here.

Achieve a basic understanding of concepts in 3D geometry
Become familiar with the concept of parametric design
Generate 3D meshes from found and created 2D images
Import 3D meshes into SketchFab, an online platform for sharing and discovering 3D
models.

Download Google Cardboard app for iPhone or Android
Access to a computer

We will examine some of the fundamental principles of 3D geometry that allow the computational
representation of three dimensional shapes and allow us to understand how these can be created
programatically.

Public Domain 3D Cow

Vertex (singular) or Vertices (plural)
One or more points in 3D space.

Cartesian Coordinates
A vertex is commonly located in 3D space using the Cartesian coordinate system. When
positioning a point on you use the the X, Y and Z coordinates as show below:

3D Geometry and Parametric Design

Aims

Pre-requisites

Concepts in 3D geometry

Glossary of Terms

https://github.com/garethfoote/3D-generative-meshes-oF
https://sketchfab.com/

3D Cartesian Coordinate

Primitives
When joined together vertices make the basic building blocks of a 3D structure. The
shapes formed are called primitives. Primitives can be points and lines but they become
more useful when they form more complex shapes such as triangles or rectangles that
can form a surface area. also known as a face.

Face
As you can see from the the cow model each of the individual triangles is covered by a flat
surface. Each one of these is a face, which combined make up the surface of the solid
object.

Triangles
To create a face you must have 3 or more vertices. This is why the triangle is the
commonly used shape in 3D modelling. It is the most simple (or primitive) shape and can
be used to represent the surface of a model.

Tesselation
Tesselation is the process of filing a flat surface with shapes (or tiles) so that there are no
gaps in that surface.

1-uniform_n11.svg.png 1-uniform_n5.svg.png 1-uniform_n1.svg.png

tessellation_texture_by_quipitory-d38nksj.png 5728579339_97f7895e02_b.jpg

Graphics cards on computers work only work with triangles so any 3D shape you see on screen will
have been converted in triangles at some point by the software or by the graphics card itself.

uT6do.jpg

Read more about tessellation

In maths it is the part of an equation that can be variable, creating change in the output/result. It
follows this simple model:

Parametric Design

The ground of parametric design is the generation of geometry from the
definition of a family of initial parameters and the design of the formal relations
they keep with each other.

“

What is a parameter?

https://en.wikipedia.org/wiki/Tessellation

INPUT
(PARAMET

ER)

> EQUATION > OUTPUT

In programming and computation writing an algorithm follows this pattern. When an input
parameter is changed the rules of the equation or algorithm produce a variety of possible
outcomes. If there are multiple input parameters then those possible outcomes increase
exponentially.

The project below is a study of algorithms on baroque and renaissance paintings. The artist, David

Quayola, leaves behind the iconographic meaning of the pictures and uses the raw information
(for example colour, shape and the relationships within these) to create new pieces. The
informational nature of the pictures can be used in combination with algorithms to modify outputs.
No doubt within the creative process there are ways to manually delve into the code to tweak
parameters and therefore manipulate the possible outcomes.

Quayola - Iconographies source Quayola - Iconographies outcome

Parametric design is also used within architecture to functionally and creatively explore the
possibilities in 3D spatial design. Combining formal rules (i.e. algorithms or equations) and making
small variations to the input can produce huge and sometimes unexpected shifts in outcome.

berlin.jpg

As you can see from this Google search for parametric design (June, 2017) there is a recognisable
style that is reminiscent of organic shapes and patterns. Without speculating on the functional or
aesthetic value of this trajectory it is without doubt a function of designing with the aid of powerful
computers that can model physical systems in nature that has enabled this. The relationship
between parametric design and this type of outcome is that each of these designs would be
partially determined by systems of rules in computation and part by the agency of designers,
architects or artists. Google Image Search - Parametric Design

1. Creating Composition Systems
As a designer you often construct systems or 'grammars' that help to guide an outcome.
This is the principle of parametric design however formalised into code and software.

2. Variation
Variation to a single parameter of a system (i.e. equation or algorithm) can create change
in the output that is proportionally larger to the scale of the input. Increasing the number
of parameters can again increase the variations of output exponentially! The challenge
then becomes how to capture these outputs and make choices between them.

Algorithms as a design partner

Characteristics of Parametric Design

https://www.quayola.com/
https://www.quayola.com/

3. Complexity
Simple rules create complex outcomes. Also incorporating randomness into systems can
increase the the variation of outcomes.

4. Modelling physical systems
The speed of calculations in modern computers means that simulation or modelling of
physical systems is entirely possible and in doing so can become part of system of
parametric design.

1. Download software

2. Download images

How does the software work? Let's use it and find out.

Screenshot-2017-06-15-09.29.44.png

RGB Cube

If you want to recreate or learn from this yourself the code is available here and I would
recommend following this tutorial for a grounding in 3D meshes in openFrameworks.

Parametric Design Fundamentals YouTube series

A History of Parametric Design

What is Parametric Design?

openFrameworks Book: Generating Meshes from 2D images (This was an
invaluable resource used for the creation of the software in this workshop)

The Software

Further Reading / Watching:

https://lab.arts.ac.uk/attachments/10
https://www.dropbox.com/s/t7wodlu6koz01gm/source-images.zip?dl=0
https://github.com/garethfoote/3D-generative-meshes-oF
http://openframeworks.cc/ofBook/chapters/generativemesh.html
https://www.youtube.com/watch?v=2rJf8ELAkcQ
http://www.danieldavis.com/a-history-of-parametric/
http://www.parametriccamp.com/en/what-is-parametric-design/
http://openframeworks.cc/ofBook/chapters/generativemesh.html

