
Set up development environment
Understand the principles of locating points on screen
Drawing shapes
Understanding additive colour and using RGB colour space
Use browser-based tools for debugging and logging
Animate shape or colour using variables

During this series of workshops you will be using a library called p5.js to learn the fundamentals of
programming. The p5.js project is the most recent part of a complex history of open-source,
creative coding libraries going back to the early 2000s. It is supported by the Processing

Foundation, which is a not-for-profit organisation that emerged from the creative coding library
Processing.

From a technical perspective, p5.js is simply a JavaScript library. A library is a collection of code put
together to simplify a task or a collection of tasks. In this case p5.js provides a lot of functionality
that makes it easy to draw shapes, colours and handle user interaction within a web page.

This video from Daniel Shiffman is a good introduction to p5.js and the creative coding platforms
that preceded it:

https://player.vimeo.com/video/137979313

The code for this workshop is hosted on Github, which is a web-based repository for hosting and
versioning code.

Download the code and unzip it on your desktop.

Week 1 - Coordinates, shapes and
colour

Outcomes

What is p5.js?

Supporting code

The code is also available to view directly on Github's website.

http://p5js.org
https://processingfoundation.org/
https://processingfoundation.org/
http://processing.org/
https://player.vimeo.com/video/137979313
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/archive/master.zip
https://github.com/lcc-prototyping-lab/intro-to-programming-2017

In this exercise you will set up a p5.js project using the Atom text editor, then examine the
different files and run the code in a browser. The code to support this section is located in the
following directory and is available to view on Github:

p5.js project structure
What is a sketch?
What do the setup() and draw() functions do?
Adding your project to Atom
Using the browser debugging tools

Below is the structure of a p5.js project, which is essentially a web project made up of HTML and
JavaScript files.

p5.js is a JavaScript library designed for drawing to a web page. For JavaScript code to run in a
browser it needs to be included in a HTML file. The index.html file is the 'entry point' for the browser
to access our project code. Note the use of the <script> tag to import two JavaScript files (line 7 &
8).

The first JavaScript file (libraries/p5/p5.min.js) is the p5.js library containing a vast amount of code
that we can use without having to fully understand.

The second JavaScript file (sketch.js) is where we write our own code.

Below is the minimum required code for a p5.js sketch. This is simply an empty template for us to
start coding and will not produce any visual results.

A p5.js project

/00_empty_project/

Topics

A p5.js project

/00_empty_project/
 ├── index.html
 ├── libraries
 │ └── p5
 │ └── p5.min.js
 └── sketch.js

index.html

sketch.js

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/00_empty_project

To summarise, we now know that when the browser loads the index.html file, it will import the p5.js
library and the sketch.js file, and then execute the code we have written.

Within the sketch we have two functions: setup() and draw() . p5.js calls/runs these functions for us
in a particular order. The setup function runs first and only once. The draw function then runs
repeatedly until the web page is closed.

sketch-setup-draw-01.png

When coding in any language and with any level of experience or expertise, you will almost always
encounter bugs. Writing code is often a trial and error process. Therefore, to be productive
programmers we need debug our code in order to identify and fix problems. This means using tools
to show us where errors in our code occur whilst it is being executed in its runtime environment.

p5.js is written in JavaScript and therefore the environment for running our code will be the
browser. There are developer tools built into all the major browsers that van be used for
debugging. For now, we recommend using Chrome so we are all using the same tools throughout
the workshop. Chrome has an easy to use and fully featured set of developer tools also known as
DevTools.

Take a look at Chrome's instructions on how to use the DevTools, in particular the
Accessing the DevTools section

A more involved introduction to developer tools from HTML5Rocks.
p5.js has a very good Field Guide to Debugging. It explains that debugging is a
creative problem solving task and stresses the importance of taking time to observing the
problem in order to understand it.

Add the 00_empty_project directory to Atom
Open index.html in a browser
Use the developer tools to see logged messages

In this exercise you will learn how to locate and target positions (i.e. pixels) on screen for drawing.
We will also learn how to use some basic functions of p5.js for making primitive shapes. The code
to support this section is located in the following directory and is available to view on Github:

Sketch - Why a sketch?

setup() and draw()

Debugging

Exercise

Coordinates and Shapes

https://developer.chrome.com/devtools
http://p5js.org/tutorials/debugging.html
https://www.html5rocks.com/en/tutorials/developertools/part1/
http://staging.p5js.org/tutorials/debugging.html
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/01_coordinates_and_shapes

Comments
Using p5.js functions
Drawing some simple shapes
Locating points on the screen using Cartesian Coordinates

When writing code it is a good idea to sometimes write notes to yourself or other coders to explain
what the code is meant to be doing. The way we do this is by adding comments. Comments can be
added in two ways:

1. Single line comment
Using the double forward slash (//) at the beginning of the line instructs the browser to
ignore that entire line.

2. Block quotes
A forward slash and an asterisk (/*) will start the comment block and the reverse, an
asterisk and a forward slash (*/), will end it. The browser will ignore everything in
between, which can be multiple lines of notes.

You will see comments used in this exercise to ignore lines of code that are incomplete or contain
errors.

We will address functions in more detail later but here is a brief explanation. A function is multiple
lines of code that achieve a specific task. These are grouped together and given a name so that
they can be used again and again.

Later on we will write our own functions but, for now, we will use some functions that are provided
by the p5.js library.

/01_coordinates_and_shapes/

Topics

Comments

// This rectangle is the button that starts the game.
rect(20, 100, 50, 100);

/*
This is a reminder that the code below is not complete yet.
It might be improved by taking this code and making it into
a function of its own.
*/

p5.js drawing functions

createCanvas(800, 450)
This is called inside setup() to create a drawing area of a certain width and height – in this
example the canvas is 800 pixels wide and 400 pixels high.

rect(50, 100, 200, 40)
This function draws a rectangle 50 pixels from the left of the canvas (x), 100 pixels from
the top (y). The width of the rectangle will be 200 pixels and the height will be 40 pixels.

To understand how to position elements on screen we need to go back to school. When drawing to
a screen on the majority of programming languages will use a version of the Cartesian Coordinate
system.

It was a system developed in the 17th Century by René Descartes for locating unique points on a
mathematical representation of a 2D plane using numerical pairs; e.g. (50, 100) , (251, 122) . This
revolutionised the fields of geometry and algebra centuries before the first computer screens.

For our purposes, the numerical pairs represent the number of pixels counting from left to right (x
) and top to bottom (y). For most, the diagram on the left will be familiar for plotting points on a
graph:

drawing-03.png
(image credit: https://processing.org/tutorials/pixels/)

The only difference between plotting points on a graph and on a screen using code is that (in
nearly all languages) we plot points on a screen starting from the top left corner rather than the
centre. You need an x value (horizontal position) and a y value (vertical position) in order to
specify a pixel position on screen.

In our code we call the following function:

The function accepts 4 arguments that define the position and shape of the rectangle:

Therefore the result of this will be the following:

Within the p5.js library a [HTML canvas element](https://developer.mozilla.org/en-
US/docs/Web/API/Canvas_API) is created.

Cartesian Coordinates

Using coordinates in functions

rect(50, 100, 200, 40);

rect(x, y, width, height);

cartesian.png

Each function in the library can take different arguments depending on its purpose. For example,
when defining a line we do not specify the width and height because lines are 1 dimensional (they
have zero or negligible height). Instead, a line is better defined by a start and end position on our
screen; two sets of Cartesian Coordinates:

Below is a diagram showing how this using the cartesian coordinates system.

drawing-06.png(image credit: https://processing.org/tutorials/pixels/)

You will not be expected to instinctively know what arguments to give to a particular function like
line() or rect() . When using libraries written by someone else, it is common for the authors to
provide online documentation describing each of the functions.

We know from our sketch that the rect() function accepts a minimum of 4 arguments: x, y, width
and height. Without being told, how do we know what these parameters mean? And what about
other functions like triangle() or quad() ?

To find out, we check the online documentation provided by the authors of the library or
programming language. You can search online for the function you are using and the
documentation will give you all the information you need to use it, typically with some useful
examples. We can check the reference for p5.js, and specifically the page that explains the line

function.

Add the 01_coordinates_and_shapes directory to Atom
Open index.html in a browser
Change the position, width and height of the rectangle
Draw a line
Draw an ellipse, triangle, or quad

The code to support this section is located in the following directory and is available to view on
Github:

line(x1, y1, x2, y2);

Documentation

Exercise

Colour

/02_colour_stroke_fill/

https://p5js.org/reference
https://p5js.org/reference/#/p5/line
https://p5js.org/reference/#/p5/line
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/02_colour_stroke_fill/

When defining a colour in code, we need to describe it numerically using a 'colour space'. The most
common colour space used in computing is RGB (Red, Green, Blue). Those with experience of
graphical software such as Photoshop will be familiar with the colour selector that shows you the
RGB values as your move around the colour palette:

selector.jpg

An RGB colour can be understood by thinking of it as all possible colours in the visible spectrum
that can be made from combinations of red, green, and blue light. By defining the intensity of each
of the three colours that are mixed together, it's possible to pick from over 16 million different
colours. Arguably more than the human eye can see.

In practical terms, we specify the individual amounts of red, green, and blue using values between
0 and 255.

For example, this describes the colour red:

This describes green:

And this describes the orange colour used on this website:

rgb.jpg

In contrast to subtractive colour models, such as CMYK used for paints and print, the RGB colour
space is additive. When you mix the primary paints or pigments together the resulting colour will
become increasingly dark, working its way towards black. With colour displayed on a computer
monitor or mobile device, adding red, green and blue together will provide white.

RGB Colour Space

255, 0, 0 <---- RED

0, 255, 0 <---- GREEN

255, 152, 0 <---- ORANGE

Additive colour

If you want to know all there is to know about colour theory then read Joseph Alber's
amazing book, Interaction of Colors.

Using colour functions

http://ux.stackexchange.com/questions/30127/monitors-display-more-colors-than-human-eye-can-distinguish
https://www.amazon.co.uk/Interaction-Color-Josef-Albers/dp/0300179359

In the p5.js library there are functions provided for controlling the colour of the fill and stroke of
shapes.

fill(r, g, b)
This determines the main body of colour inside a shape.
stroke(r, g, b)
This defines the colour of the line that surrounds the shape.

Here are some examples of giving three arguments (r,g and b) to the fill and stroke functions:

1. fill(255, 0, 0) // red shape fill
2. fill(255, 255, 0) // yellow shape fill
3. stroke(0, 0, 255) // blue outline
4. stroke(255, 0, 255) // magenta outline

Another feature of these functions is the ability to use them to define grayscale values. Passing a
single argument between 0 and 255 will result in a colour between black and white:

1. fill(0) // black shape fill
2. fill(255) // white shape fill
3. stroke(150) // grey outline

When calling these functions you are defining the fill and stroke colour for all the shapes you draw
after that line of code. So it is important to pay attention to the order in which you use them.

The code below draws a selection of shapes around the canvas. They are all coloured white, gray or
black. Your task is to add some colour to this situation.

Add the 02_colour_stroke_fill directory to Atom
Open index.html in a browser
Change the fill and stroke colour for each shape

The code to support this section is located in the following directory and is available to view on
Github:

Grayscale

Order is important

Exercise

Simple Interaction and variables

/03_simple_interaction/

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/03_simple_interaction/

p5.js defines some variables that we can use in our code about the properties of the sketch and
also user inputs (e.g. mouse and keyboard). We can use these to make our code easier to maintain,
more flexible, and to possibly add some basic interactions.

A variable is how we store useful values in code. The types of things we can store depends on the
programming language being used, but common examples are numbers and text.

Think of a variable as a container or box. The value is the thing inside the box, and the label on the
front of the box is the name we use to identify it.

In reality, the variable's container is a small section of memory on your computer.

After you've called the createCanvas(width, height) function, p5.js automatically stores the specified
dimensions as variables named width and height that can be used throughout your sketch. For
example, you can use those variables to calculate and draw something in the exact centre of the
canvas:

Special variables, such as mouseX and mouseY are made available by p5.js. These are extremely
useful if we want to make sketches that respond to the user's mouse input. These two variables
contain the x and y coordinates of the user's mouse at that precise moment. We can use
changing values to modify our drawing and create something more dynamic.

Add the 03_simple_interaction directory to Atom
Open index.html in a browser
Change the provided code so that a shape follows the mouse around the canvas

For the next workshop, I would like you to make a portrait (self or other) using what you've learned
from week 1. You should use the following functions and variables:

rect()
ellipse()
triangle()

What is a variable?

var myNumber = 5;
var myText = "hello";

p5.js provided variables

rect(width/2, height/2, 20, 20);

Exercise

Week 1 Assignment

fill()
stroke()
mouseX / mouseY

I would like you to use Codepen to submit your work. Codepen is an online code editor for web
based technologies (HTML, CSS & JavaScript) as well as a platform for sharing your code. I have
created a template for you to use that already includes the p5.js libraries:

http://codepen.io/pen?template=zKLpKw

Follow the link above and then edit the code in the JS panel. Click Save and you will have created a
'pen' with a unique URL (see below). Submit the Codepen URL to our Slack channel before
the next workshop.

Codepen - Create Pen from template

Revision #41
Created 12 October 2016 15:08:43
Updated 20 August 2018 11:13:01

http://codepen.io
http://codepen.io/pen?template=zKLpKw

