
Week 2 - Animation, conditionals &
random numbers

Outcomes
Understand variables and how to use them
Understand functions and how to use them
Using conditional statements to control code flow
Using variables for animation
Using random numbers
Mapping values from one range to another

Supporting code
The code for this workshop is hosted on Github, which is a web-based repository for hosting and
versioning code.

Download the code and unzip it on your desktop.

During this workshop session we will be using the following project directories:

Variables
Firstly let's take another look at variables in a bit more detail. A variable is simply a way of storing
information in the computer's memory. Let's dive right in with an example...

The code is also available to view directly on Github's website.

04_using_variables/
05_animation/
06_conditionals/
07_random/
08_random_recursive_tree/
09_map_weather_api/
10_map_hsb_colours/

https://github.com
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/archive/master.zip
https://github.com/lcc-prototyping-lab/intro-to-programming-2017

Let's break down the above statement:

1. var - This is how the browser knows you are 'declaring' a new variable
2. rectWidth - This is the name of the variable, which we can refer to later in our code. What

you call a variable is up to you but there are some conventions.
3. 5 - The value which we want to store in the computer's memory

Read more about variables in JavaScript

Using variables

Now that our variable rectWidth is stored in memory, we can access it using its name to return the
stored value.

In this example, a new variable rectHeight is declared and assigned a value of 7. On the third line
both the previous variable values are retrieved from memory and multiplied using the multiply
operator (*). This is immediately stored in the rectArea variable before finally being logged to the
console.

Here is what happens line by line:

1. Store the number 5 in a variable named rectWidth
2. Store the number 7 in a variable named rectHeight
3. Multiply the values in rectWidth and rectHeight , storing the result in a variable named

rectArea
4. Log the value of rectArea

Exercise

var rectWidth = 5;

Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/04_using_variables/

var rectWidth = 5;
var rectHeight = 7;
var rectArea = rectWidth * rectHeight;
console.log(rectArea); // This will write 35 to the console.

https://lab.arts.ac.uk/books/prototyping-lab/page/javascript#bkmrk-variables
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/04_using_variables/

Add the 04_using_variables directory to Atom
Open index.html in a browser
Open and look at the console in the browser's developer tools
Remove the comments at the beginning of line 20 and reload your browser

Animation using variables
The code to support this section is located in the following directory and is available to view on
Github:

In this exercise a variable will is used to store, retrieve and increase a value. This value will
represent the position of a shape drawn to the canvas.

Here is a portion of the code extracted from the provided example:

As you can see a variable called positionX is declared and assigned a value of 0. Importantly this
variable is declared outside of the function where it is later used. The variable is declared in the
global scope (more on this later) making it accessible throughout the entire application (i.e.
globally).

Exercise
Add the 05_animation directory to Atom

/05_animation/

var positionX = 0;

/*
[code excluded]
*/

function draw(){
 // Set the background to black every frame
 background(0);

 // Draw a rectangle that moves along the X axis
 rect(positionX, height/2, 10, 10);

 // Increase the value stored in positionX
 positionX = positionX + 1;
}

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/05_animation/

Open index.html in a browser
Use the conditional if statement to reset the square to position 0.
Increase the speed of the rectangle
Move the rectangle on the X and Y axis

Conditionals
The code to support this section is located in the following directory and is available to view on
Github:

A conditional statement is used to control which code is executed based on certain pre-determined
conditions. This process is one method of controlling the flow of our application.

If statements
Conditional statements are written in code using the if keyword. In fact, conditional statements
are often referred to as if statements. Below is an example of how a conditional statement is
formed using the if keyword:

By replacing the condition above with other statements we can start to control what parts of our
code are executed under which conditions.

You can think of this as a very simple flow diagram or decision tree. If condition A is TRUE then the
code block runs, however if it's FALSE the code is ignored.

/06_conditionals/

if (condition) {
 // code that runs if the condition is true
}

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/06_conditionals/
https://en.wikipedia.org/wiki/Control_flow

Image not found or type unknown

Is the statement true or false?
When writing a condition, commonly known as a conditional statement, the truth of the statement
is being evaluated or checked. In the following examples this happens by comparing two values.
These values can be variables, literal values or a combination of the two.

Here are some practical examples of if statements that use both variables and literal values.
Between each set of brackets is a statement comparing two values. Those comparisons will return
a value of true or false, which determines if the code within should be executed or ignored.

Literal values
Literal values are those that we write in our code literally.As opposed to variables that can
change, these values are written explicitly in our code and do not change. Here are some
examples:

"Hello, World"
12
3.141592

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#Literals

Comparison operators
In conditional statements, a comparison operator sits between the two values and is used to
determine whether the statement is true or false. Below is a list of conditional statements using
different comparison operators.

A == B A equal to B

A != B A is not equal to B

A > B A is greater than B

A < B A is less than B

A >= B A is greater than or equal to B

A <= B A is less than or equal to B

If the statement is true then the code within the conditional will run. Here are some more practical
examples:

Let's break down one of the above conditions:

1. userName
A variable – as the word 'variable' suggests, we expect it may change.

if(userName == "bob"){
 // Any code in here will run when userName is equal to ('==') "bob"
}

if(durationHours > 12){
 // Any code in here will run when durationHours is greater than (`>`) 12
}

if(rectArea <= 35){
 // Any code in here will run when rectArea is less than OR equal to ('<=') 35
}

value1 == value2
userName == "bob"
playerScore >= 10
"west" == windDirection
juneTemperature > mayTemperature

2. ==
A comparison operator checking for equality – checks if the value on the left is equal to
the value on the right.

3. "bob"
A string literal – written explicitly and therefore will not change.

Since variables can change value throughout the execution of code, the comparison to a static
value causes code to run only during particular conditions.

If variables are named well you can start to read through the logical steps of your application by
reading the code as human language:

Exercise
Add the 06_conditionals directory to Atom
Open index.html in a browser
Modify the code inside the first conditional to make the ball bounce off the right side of
the canvas
Use another conditional to make the ball bounce off both sides of the canvas
Change the colour, size, speed of the ball when it bounces off the wall
Move up and down instead of left and right

Using random numbers
The code to support this section is located in the following directory and is available to view on
Github:

Most programming languages provide functions for generating random numbers. This can be very
useful in providing some variations to deterministic behaviour of code.

In p5.js there is a function for generating a random number between a minimum and maximum
value:

if the userName is equal to "bob"
 then do something

Double (==) and single (=) equals signs
Always be sure to use the double equals sign in conditional if statements. Using the single
equals sign will change the value stored inside the variable.

/07_random/

random(min, max);

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/07_random/

The min and max arguments set the minimum and maximum values that can be returned from
that function.

You can also use a variable as one of the arguments:

The random() function can be used to set properties of shapes in our sketch such as position, size
or colour.

In the following example the positionX and positionY variables are assigned values that are half of
the width and half of the height of the canvas respectively. This will place the ellipse in the centre
of the canvas when the code runs.

Here is an example of how to use the random function to change the starting position of the ellipse
to a random position on the canvas on every execution of the code.

random(0, 10);
random(120, 180)
random(15, 22);

random(0, width);
random(0, height);

var positionX;
var positionY;

function setup() {
 createCanvas(800, 450);
 // Assign a value to the variables
 positionX = width/2;
 positionY = height/2;
}

function draw() {
 // Use the value within the variables.
 ellipse(positionX, positionY, 10, 10);
}

var positionX;
var positionY;

function setup() {

Exercise
Add the 07_random directory to Atom
Open index.html in a browser
Change the X and Y positions of the ellipse using random() on every frame
Change another feature of the shape with random (size, colour, etc)

Randomness and probability
The code to support this section is located in the following directory and is available to view on
Github:

Add the 08_random_recursive_tree directory to Atom
Open index.html in a browser and you will see something similar to this:

 createCanvas(800, 450);
 // Assign a value to the variables
 positionX = random(0, width); // Random number between 0 & 800
 positionY = random(0, height); // Random number between 0 & 450
}

function draw() {
 // Use the value within the variables.
 ellipse(positionX, positionY, 10, 10);
}

The Nature of Code
For an in-depth look at how random numbers relate to other programming concepts such as
probability, evolutionary programming and the 1982 sci-fi classic Tron, take a look at Daniel
Shiffman's free online book The Nature of Code.

/08_random_recursive_tree/

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/08_random_recursive_tree/
https://www.youtube.com/watch?v=Ng1U4LMZz7Y
http://natureofcode.com/book/introduction/

Image not found or type unknown

This is an example of using randomness and probability to produce organic forms. Take a look
through the code and you will see some lines such as this:

// Create a random numbers between 0 and 1
var r = random(0, 1.0);

// 98% chance this will happen
if (r > 0.02) {
 [code excluded here]
}
// 2% chance this will happen
else {
 [code excluded here]
}

You can see that by using random numbers and conditional statements you can quite easily create
systems that have interesting and unexpected results within the limits of probability.

This code also uses a very powerful technique called recursion, which is beyond the scope of this
workshop. Essentially the code is self-referential and therefore within very few lines of code can
create complex outputs.

Mapping values
The code to support this section is located in the following directory and is available to view on
Github:

A common programming task – particularly when visualising information – is to take a value that is
changing within one range and mapping that onto a different range.

As an example, let's think about visualising the current temperature (a changing value) by drawing
a thermostat.

Image not found or type unknown Image not found or type unknown

We know that the value is going to be in this approximate range of 0 to 50 °C and the size of the
red thermostat indicator is a shape with a height between 0 and 200 pixels:

MIN MAX

°C 0 50

pixels 0 200

Let's assume we have retrieved the current temperature in degrees centigrade, for example
through a weather API.

If the temperature is 50°C, the height of the red bar would be 200 pixels; if the temperature is 0°C,
the height would be 0 pixels; and if the temperature is 25°C (half way point of the range), the
height would be 100 pixels (half the height).

Current Temp (°C) Height (pixels)

0 0

50 200

25 100

/09_map_weather_api/

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/09_map_weather_api/

Current Temp (°C) Height (pixels)

10 40

35 140

Using the map function
Within p5.js there the map function performs the calculations that translates one range onto
another. The map() function takes 5 arguments:

So using the example of the thermostat, we would convert the current temperature stored in a
variable called temperature using the following:

And here are some examples from above using literal integer values:

Exercise
Add the 09_map_weather_api directory to Atom
Open index.html in a browser
Look through the code and find where the map() function is used
Change the city in the preload function to see the API results from other places

HSB Colour
The code to support this section is located in the following directory and is available to view on
Github:

Using the RGB colour space we can produce as the specific colours we need. However, in order to
manipulate or generate colours, the RGB colour space doesn't offer the best tools. For this we can
use the HSB colour space or Hue, Saturation and Brightness. It is sometimes also known as as HSL
(lightness) or HSV (value).

map(value, fromMin, fromMax, toMin, toMax);

map(temperature, 0, 50, 0, 200);

map(25, 0, 50, 0, 200) // returns 100
map(10, 0, 50, 0, 200) // returns 40
map(35, 0, 50, 0, 200) // returns 140

/10_map_hsb_colours/

https://p5js.org/reference/#/p5/map
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/10_map_hsb_colours/

Within this model the hue defines the colour we see, which is the wavelength of light being
produced. The saturation defines how intense or vivid the colour is. The way the colour is
desaturated is by the addition of grey: 100% saturation means there is no grey and 0% saturation
will result in a medium grey. The brightness determines the amount of black or white that's mixed
with the hue.

Here are the RGB and HSB colour spaces visualised:

rgb-hsb.pngImage not found or type unknown

Changing colour mode
In p5.js you can change the colour space from RGB to HSB using the following.

The colorMode function can also take 3 more arguments:

These last 3 arguments represent the range of values we can pass as arguments into the colour
functions such as fill() and stroke() .

In RGB colour mode, the range is by default:

Red Green Blue

0 - 255 0 - 255 0 - 255

But in HSB mode, the hue is usually between 0 and 360 whilst the saturation and brightness are
between 0 and 100.

Hue Saturation Brightness

0 - 360 0 - 100 0 - 100

The saturation and brightness are essentially represented as a percentage (0 to 100%) of their
most extreme condition, which is the least saturated and the most bright.

But why is the hue value between 0 and 360? As mentioned the HSB colour is visualised as a
cylinder (or sometimes as a cone) and the hue is represented as the perimeter of the circle that
sits at the top of the 3D shape. Therefore the 360 is the angle in degrees around that circle.

colorMode(HSB);

colorMode(HSB, 360, 100, 100);

Image not found or type unknown

Image credit: www.runemadsen.com

Exercise
Using the HSB colour space we can create easily create colour schemes that have a mathematical
relationship to each other. A simple example is choosing a particular hue and saturation and then
adjusting the brightness. However you can also choose selections of hue based on their
relationship around the 360 degrees of the colour wheel.

analogous-5905a98134b0e87c7822f38cf9af3d62_large.jpgImage not found or type unknown
Analogous

complementaries-41a71e8df01c8b7e659808b1d03289f0_large.jpgImage not found or type unknown
Complementary

triadic-9adb1731f0659e77584becced63e35ef_large.jpgImage not found or type unknown
Triadic

tetradic-768b73622eb3aec919d28e8edcad2f51_large.jpgImage not found or type unknown
Tetradic

All of these examples are from the Rune Madesen's lecture on colour as part of his Printing
Code module at ITP. The online resources from this are extremely useful.

In the provided example, the mouseX value is being mapped from one range (0 to width) onto
another (0 to 360):

MIN MAX

width of canvas 0 50

degrees of colour wheel 0 360

http://printingcode.runemadsen.com/lecture-color/
http://printingcode.runemadsen.com/lecture-color/

Therefore as the mouse moves across the canvas the mapped value travels between 0 and 360.
This is then used to set the hue of the fill colour showing the full spectrum of colour.

Add the 10_map_hsb_colours directory to Atom
Open index.html in a browser
Explore different values for brightness and saturation
Create colour schemes with hues that have are related on the colour wheel, e.g.
analogous, triadic, etc.

Functions
Functions are used to define a process that can be constructed of one or more lines of code. They
are often used to organise and structure code by the intended outcome or behaviour.

Here are a few benefits to using functions:

1. Keep code organised
2. Make code easily reusable
3. Breaking down a task into smaller pieces (decomposition)
4. Making problems in the code easier to identify and troubleshoot (seperation of concerns)

Using functions
Making use of functions is broken down into two parts. First, the function behaviour needs to be
defined, i.e. the code needs to be written. Secondly, the function needs to be called (also known as
'executed').

Define the function behaviour
Below are 4 lines of code contained within a function that perform the task of calculating the area
of a shape. This is where the function is being defined.

var colour = map(mouseX, 0, width, 0, 360);
var columnWidth = width/3;

fill(colour, 100, 100);
rect(columnWidth*0, 0, columnWidth, height);

fill(colour, 80, 70);
rect(columnWidth*1, 0, columnWidth, height);

fill(colour, 60, 40);
rect(columnWidth*2, 0, columnWidth, height);

Let's break down the unfamiliar parts of the above code:

1. function
This is how the browser knows you are declaring a new function.

2. calculateArea()
'calculateArea' is the name of the function, which we can use to refer to later in our code.
What you call a function is up to you but there are some conventions.

3. { }
These are curly brackets or curly braces. They start and end the content of the function.
All code written between these two brackets is the behaviour of the function.

Call the function
The above code will do nothing until we call the function elsewhere in our code.

Function parameters
A common use of a function is to make our code more reusable. One way of making our functions
more reusable is by adding parameters.

Assignment
Part 1
Create a sketch that includes:

one or more elements that changes over time.
one or more elements that is controlled by mouse or keyboard

function calculateArea() {
 var width = 5;
 var height = 7;
 var area = width * height;
 console.log(area);
}

calculateArea(); // Logs 35

function calculateArea(width, height) {
 var area = width * height;
 console.log(area);
}

one or more element that is random() in nature

Work can again be submitted using Codepen. Here is the URL for the p5.js template:
http://codepen.io/pen?template=zKLpKw

Please submit the Codepen URL the day before our next workshop.

And here is a short guide on using Codepen:

Codepen - Create Pen from templateImage not found or type unknown

Part 2
When you submit your URL I would like you to also submit a question about what we've been
covering (or have missed) over the last two weeks. For example:

What does a certain error message mean?
How do I create a colour with an alpha channel?
Are there any other colorModes?
What is the highest framerate?

Revision #40
Created 30 October 2016 18:26:24
Updated 20 August 2018 11:13:01

http://codepen.io/pen?template=zKLpKw

