
Week 3 - Iteration, arrays, objects and
pixel arrays

Outcomes
Iteration using while and for loops
Understand and using arrays
Using loops and arrays together
Understanding and using JavaScript objects
Understanding how colour data is stored in pixel arrays
Accessing the webcam

Supporting code
The code for this workshop is hosted on Github, which is a web-based repository for hosting and
versioning code.

Download the code and unzip it on your desktop.

During this workshop session we will be using the following project directories:

Local web server
So far during this series of workshops testing your code has involved opening the index.html file in
your browser, which results in an absolute file path in the browser address bar (see below). You can
see this indicated by the file:// protocol followed by the absolute file path to the index.html file:

The code is also available to view directly on Github's website.

11_iteration_and_loops/
12_iteration_02/
13_loops_and_arrays/
14_pixel_array/
15_image_pixel_array/
16_webcam_capture/

https://github.com
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/archive/master.zip
https://github.com/lcc-prototyping-lab/intro-to-programming-2017

Image not found or type unknown

For some examples you will need to run a local HTTP web server that serves the files in a project. If
you have Node.js already installed you can run the following command to install an HTTP web
server:

If you receive an error from the above command it's likely that you do not have Node.js installed. In
which case visit the Node.js homepage and download/install the LTS version and repeat the
command above.

Once you have installed the HTTP web server you will need to change directory (cd) into the
project directory on the command line and run the server:

sudo npm install -g http-server

https://nodejs.org/en/
https://nodejs.org/en/

If successful you will see messages in the command line similar to this:

Image not found or type unknown

You can then copy and paste one of the URLs into you browser:

Image not found or type unknown

cd ~/Desktop/intro-to-programming-2017/15_image_pixel_array/
http-server

Iteration: while and for loops

Sometimes it is necessary to repeat a task over and over on the same data in order to achieve a
desired outcome. This is known as an iterative process and each step is an iteration.

The most common application for iteration is to create, check, or modify a collection of variables.

In the previous workshop, we were introduced to the idea of conditionals. We saw that an if
statement can be used to branch code, but this is only performed once.

If we want to perform a conditional operation repeatedly, we need to use a different statement –
the while loop.

The example below will draw six circles onto the canvas. Note that the circles are identical, apart
from the x coordinate.

We can simplify this code by using a while loop.

Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/11_iteration_and_loops/
/12_iteration_02/

function setup() {
 createCanvas(400, 300);
}

function draw() {
 background(128);
 ellipse(50, 225, 20, 20);
 ellipse(100, 225, 20, 20);
 ellipse(150, 225, 20, 20);
 ellipse(200, 225, 20, 20);
 ellipse(250, 225, 20, 20);
 ellipse(300, 225, 20, 20);
 ellipse(350, 225, 20, 20);
}

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/11_iteration_and_loops/

What's happening in the above example line-by-line:

1. var x = 50;
Here we create a temporary variable to help us iterate. In this case an integer, initially set
to 50.

2. while (x <= 350) {
This starts the while loop. As long as the condition inside the parentheses remains true,
the code that follows the curly brace will be repeatedly executed (forever!)

3. ellipse(x, 225, 20, 20);
We draw a circle. The y-position, height, and width are identical for each; the x-positon is
set using the current value of our temporary variable.

4. x = x + 50;
The value of the temporary variable is increased by 50.

As soon as the condition inside the parentheses returns false, the while loop exits and code
execution continues.

Although this is a very common code pattern, it's unusual to see while loops actually used in code.
This is because most programming languages provide us with a more useful variant – the for loop.

A for loop is written slightly differently from a while loop. The parentheses contain three
statements separated by semicolons, rather than a simple test.

function setup() {
 createCanvas(400, 300);
}

function draw() {
 background(128);
 var x = 50;
 while (x <= 350) {
 ellipse(x, 225, 20, 20);
 x = x + 50;
 }
}

function setup() {
 createCanvas(400, 300);
}

function draw() {
 background(128);
 for (var x = 50; x <= 350; x = x + 50) {

What's happening inside the parentheses:

1. for (var x = 50 ; x <= 350; x = x + 50) {
A temporary variable is declared and initialised in the first statement.

2. for (var x = 50; x <= 350 ; x = x + 50) {
The second statement contains the condition that is checked. If this returns false the loop
exits.

3. for (var x = 50; x <= 350; x = x + 50) {
The final statement contains code that is to be executed after each successful loop.

Even in these basic examples, it's clear to see that loops help us avoid repetition and reduce the
number of lines of code we write.

Exercise
Add the 12_iteration_02/ directory to Atom
Open index.html in a browser
Change the RGBA values of the pixels inside the nested for loop
Try using the random() function to set the colour values
Try using the x and y variables to set the colour values

JavaScript Arrays
Arrays are essentially ordered lists of things and each item in that list can be accessed individually.
The array itself is a type of variable and it stores other variables inside. The stored variables can be
used in the same way as you use any other variable.

Here is a simple array:

What's important about an array is the order of the items within. To access any individual item of
data stored inside the variable, we need to reference the item's position, commonly referred to as
the array index. Crucially, the index of an array starts at zero:

And therefore the index of the last item in the array would be one less than total number of items.
In our example above we have 4 items, so the final item is accessed using the index 3:

 ellipse(x, 225, 20, 20);
 }
}

var sizes = [20, 350, 80, 210];

console.log(sizes[0]); // logs: 20

console.log(sizes[3]); // logs: 210

JavaScript arrays are particularly useful since you can store any type of data inside, including
integers, strings, objects and—perhaps confusingly—other arrays. Here is an example of an array
containing a list of strings:

And, as above, we can access the strings using the array variable technicians and counting along
the list starting from zero:

Try this for yourself using this CodePen.

Loops and arrays

When we have only a few items in our arrays, it is not a lot of additional code to access each of
them explicitly using their index:

But even this is repeating code unnecessarily. And when we start to hold hundreds or thousands of
items in our array, it would become unmanageable to write out the code above.

To unleash the full potential of arrays, they can be combined with looping structures such as for
loops. As we have seen already, the for loop can be used to run a piece of code a number of times,
incrementing an index variable on each execution:

var technicians = ["Delia", "Will", "Adam", "Gareth", "Tom"];

console.log(technicians[0]); // "Delia"
console.log(technicians[2]); // "Adam"
console.log(technicians[4]); // "Tom"

Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/13_loops_and_arrays/

ellipse(x, y, sizes[0]);
ellipse(x, y, sizes[1]);
ellipse(x, y, sizes[2]);
ellipse(x, y, sizes[3]);

for(var i = 0; i < 4; i++){
 console.log(i);
}

https://codepen.io/garethfoote/pen/WXyMgz?editors=0011
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/13_loops_and_arrays/

A further useful feature of arrays is that they have an internal property that contains the current
length of the array:

The length property can be used within our for loop to determine how many times the loop runs
the code before stopping. In the case of our sizes array above, the loop would continue to execute
as long as the i variable is less than (<) the number of items in the array.

This is a very common design pattern.

What is happening here?

1. The variable i is set as 0
2. The statement i < sizes.length is tested
3. If the condition is true the code inside runs
4. ...and the variable i is increased by 1
5. Go back to point 2 and repeat until false

The code would run 4 times and log 0, 1, 2 and 3.

Now we have a loop that runs as many times as there are items in the array. Crucially, inside that
loop, the variable i is incremented by 1. Each time it increments by 1 we can use it to access the
value in the array at that index:

If we recall that the first item in an array uses the index zero, we can see why our i variable is
initialised as 0 rather than 1.

Within our for loop we are now running code that accesses each of the items in the array in the
correct order.

See this code executed in CodePen.

JavaScript Objects

var sizes = [20, 350, 80, 210];
console.log(sizes.length); // logs 4

for(var i = 0; i < sizes.length; i++){
 console.log(i);
}

for(var i = 0; i < sizes.length; i++){
 console.log(sizes[i]);
}

https://codepen.io/garethfoote/pen/EbREPj?editors=0011

In JavaScript most things you encounter are actually objects. The strings, arrays and even functions
are objects at the most basic level. This is because they can all contain properties and functions
inside them.

Here, for example, the variable message has a property called length that returns the length of the
string:

More examples on CodePen.

These are objects within internal properties and functions that are provided by the JavaScript
engine inside the browser. We do not need write the code for these objects as it already exists.

However, creating your own objects is a very handy way to encapsulate related functions and
variables, and also act as data containers. We can also use this technique to model things in a
more helpful way.

Let take a look at the variables needed to draw a circle and then how we would move those
variables inside an object. Here we define three variables:

And here are the same three variables inside an object:

The first thing to note is that the object starts and ends with curly braces; the same way that we
start and end functions and if statements.

Pay careful attention to the differences between declaring variables inside and outside of an object.
Variables stored inside objects are called properties and each property has a value. The major
difference in syntax is that properties and values are separated by a colon (:) instead of an equals
sign (=).

var message1 = "what is an object";
console.log(message1.length); // 15

var x = 50;
var y = 100;
var size = 20;
ellipse(x, y, size);

var circle = {
 x : 50,
 y : 100,
 size : 20
};

https://codepen.io/garethfoote/pen/aVKENV?editors=0011

And each of the property/value pairs are separated by a comma (,), not a semi-colon (;). The
exception to this is rule is the last pair for which the comma is optional

So now that the data that defines our circle is contained within an object how do we access that
data? To access a property of an object the dot syntax is used. For example to access the x value:

So to rewrite our code above using an object:

See a simple example of this on CodePen.

Here is an example on CodePen of the above circle sketch created using a constructor
function. This is a simple example of using Object Oriented Programming in JavaScript.

Pixel array

x : 50, // Note the colon ':' separator...

x : 50, // ...and each pair separated by a comma
y : 100,
size : 20 // except the last, which is optional

circle.x

var circle = {
 x : 50,
 y : 100,
 size : 20
};

ellipse(circle.x, circle.y, circle.size);

Object Oriented Programming
A more advanced use of objects is to create templates of things that we want to represent in
our code. These templates or models can be used to create different permutations of the
same type. This is called abstraction and is one of the fundamentals of object-oriented
programming (OOP). Mozilla Developer Network has a very good section about objects

and a really interesting page introducing OOP and how to implement it using

JavaScript objects.

https://codepen.io/garethfoote/pen/bYKaXB
https://codepen.io/garethfoote/pen/vWaBQK
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS#Constructors_and_object_instances
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS

Previously we have discussed that our p5.js canvas is made up of individual pixels. Each of them
can be located using an X coordinate between 0 and the width and a Y value between 0 and the
height. Also known as Cartesian coordinates.

So how many pixels are there in a canvas of 600 pixels in width and 500 pixels in height:

We have also discussed that each pixel is made up of three values: red, green and blue. Well, there
is actually a fourth value, which we haven't discussed in a great detail called alpha. This sets the
transparency value of the pixel. So for every pixel on the p5.js/HTML canvas there are 4 pieces of
information:

So in total for our canvas of 600 x 500 we have this many pieces of information:

Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/14_pixel_array/

600 x 500 = 300000 pixels

red, green, blue, alpha

300000 (pixels) x 4 (colour value) = 1200000

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/14_pixel_array/

Image not found or type unknown

All of this information is stored in one large linear array, which we can easily access and
manipulate. However arrays are simply lists so they do not have a concept of which index relates
to which X and Y coordinate on our screen.

Image not found or type unknown

If we want to access a particular pixel we do not refer to it as, for example, the 29th pixel (the last
pixel in our example above). We are more likely to reference it using the X and Y coordinates. So
how do we get from an X and Y coordinate to access and manipulate the 4 colour values within the
pixel array?

Image not found or type unknown

In the image above the red dot represents a pixel on screen that we want to target in the pixel
array to access or change the 4 colour values.

If we were to count the grey boxes you can see that before we reach the red dot we have 2 full
rows, which equates to (y * width) . Then we count in (or add) x positions. The formula to calculate
this for any x and y value is therefore:

So far so good. However now we know that the number of the pixel in the canvas but for every
pixel there are 4 values in the array. Therefore to calculate the first of four positions in the array
that contains the RGBA values for our pixel we simply multiple by 4. In our above example we have
calculated the pixel position to be the 16th:

x + (y * width)

16 (pixel position) * 4 (colour values) = 64 (array index)

Image not found or type unknown

So now we know that the four positions in the array that represent our pixel are 64, 65, 66 and 67.
We can therefore write the following code to manually set the colour of that pixel:

But that is not very reusable code and we would have to manually calculate the index again every
time we wanted to address a new pixel. What would be much better is to put all of those
calculations into variables so we can simply change the X & Y value with ease:

function draw() {
 loadPixels();

 pixels[64] = 255; // red
 pixels[65] = 255; // green
 pixels[66] = 255; // blue
 pixels[67] = 255; // alpha

 updatePixels();
}

Using the above code we can address a particular pixel and then access the colours within the pixel
array.

Try changing the X and Y values on this CodePen. You may need to look closely or zoom in to
see the single coloured pixel.

So we now can access individual pixels based on their X & Y coordinates, what if we wanted to
modify all the pixels. We can do this by using a nested for loop to iterate along every pixel on the
X and Y axis. A nested for loop is one loop within another:

I've increased the size of the canvas to 60 pixels in width by 50 pixels in height so we have a
slightly larger area to spot our pixel in.

function draw() {
 loadPixels();

 var x = 40;
 var y = 20;
 var index = (x + (y * width)) * 4;

 pixels[index] = 255; // red
 pixels[index+1] = 255; // green
 pixels[index+2] = 255; // blue
 pixels[index+3] = 255; // alpha

 updatePixels();
}

// Loop through every pixel on the X axis...
for (var x = 0; x < width; x++) {
 // ...and for each X, loop through every pixels on the Y axis
 for (var y = 0; y < height; y++) {
 // Every (x, y) coordinate is looped here:
 var index = (x + y * width) * 4;
 pixels[index] = 255; // red
 pixels[index+1] = 0; // green
 pixels[index+2] = 0; // blue
 pixels[index+3] = 255; // alpha
 }
}

https://codepen.io/garethfoote/pen/POadJM?editors=0010

In this example above every pixel is set to full red, no green, no blue and full transparency.

Exercise
Add the 12_pixel_array directory to Atom
Open index.html in a browser
Change the RGBA values of the pixels inside the nested for loop
Try using the random() function to set the colour values
Try using the x and y variables to set the colour values

Image pixel data

So far we have been manipulating the pixel colour values of an empty canvas; or more precisely a
canvas full of a single colour. The exact same process is possible but instead of manipulating an
empty canvas we can manipulate image data loaded in from an external file.

The data that represents an image is also made up of individual pixels (this is called a raster

graphic and therefore within p5.js we access the image pixel data in the exact same way as we
have already been accessing pixels in an array. Here is an example of this using a loaded image:

Supporting Code
The code to support this section is located in the following directory and is available to view
on Github:

/15_image_pixel_array/

Use a local web server
p5.js cannot access the image pixel data from an image that is loaded directly from the file
system. Therefore you will need to install and run a HTTP server in order to complete the
next exercise. To set up an local web server follow these instructions.

var img;

function preload() {
 img = loadImage("images/maxernst.jpg");
}

function mouseDragged(){

https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Raster_graphics
https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/15_image_pixel_array/
https://lab.arts.ac.uk/books/prototyping-lab/page/web-architecture#bkmrk-exercise%3A-create-a-l

You will notice a new function being used called preload() . This is a handy function provided by
p5.js that ensures that images or external data such as API data are finished loading before calling
the setup() and draw() functions:

Image not found or type unknown

Inside the preload function we give a relative path as an argument to the loadImage() function. The
results of this are stored in a global variable img .

 var index = (mouseX + mouseY * width)*4;

 img.loadPixels();
 var r = img.pixels[index];
 var g = img.pixels[index+1];
 var b = img.pixels[index+2];
 var a = img.pixels[index+3];

 fill(r, g, b, a);
 ellipse(mouseX, mouseY, 40, 40);
}

Then later in our draw() function we can access the pixel array as a property of the img object. We
do this using the dot syntax. Here I am setting the first pixels colour to green:

Exercise
Add the 13_pixel_array directory to Atom
Set up a local web server and run it within the 13_pixel_array directory.
Open the URL provided by the local web server in a browser.
Click and drag the mouse around the canvas to see the pixel colours being rendered in
circles
Uncomment the lines in the nested for loop and play with the rgba values:

Webcam capturing
The code to support this section is located in the following directory and is available to view on
Github:

Using p5.js accessing the webcam is quite straightforward. It takes just a few lines of code:

var img;

function preload() {
 img = loadImage("images/maxernst.jpg");
}

img.pixel[0] = 0;
img.pixel[1] = 255;
img.pixel[2] = 0;

img.pixels[index] = r;
img.pixels[index+1] = g;
img.pixels[index+2] = b;
img.pixels[index+3] = a;

/16_webcam_capture/

Using a local web server
This is another instance when you won't be able to run this sketch directly from your
filesystem, you will need a local web server running. To set up an local web server follow

these instructions.

https://github.com/lcc-prototyping-lab/intro-to-programming-2017/tree/master/16_webcam_capture/
https://lab.arts.ac.uk/books/prototyping-lab/page/web-architecture#bkmrk-exercise%3A-create-a-l
https://lab.arts.ac.uk/books/prototyping-lab/page/web-architecture#bkmrk-exercise%3A-create-a-l

Behind the scenes the createCapture() function does a few clever things. Firstly it causes the
browser to ask the user if they want their camera to be opened and used. This is a security
provision to ensure nefarious programmers cannot access webcams without permission. Secondly
it creates a HTML Video element in the browser and places it next to our p5.js canvas. We can then
use the image data from inside that HTML Video object to draw into our canvas.

See this in action on CodePen.

However this leaves us with two copies of the webcam video. That is why we call capture.hide() in
all the following examples.

What is extremely useful about this object stored in the capture variable is that the pixels inside it
can be treated exactly the same as the pixel array and image pixel array examples.

var capture;

function setup() {
 createCanvas(400, 300);
 pixelDensity(1);

 // Create video capture object.
 capture = createCapture(VIDEO);
 capture.size(width, height);
}

function draw() {
 clear();
 // Draw capture to the canvas.
 image(capture, 0, 0, width, height);
}

clear();
capture.loadPixels();
for (var x = 0; x < width; x++) {
 for (var y = 0; y < height; y++) {
 // Get the pixel at x and y position
 var index = (x + y * width) * 4;
 capture.pixels[index] = 255; // red
 // capture.pixels[index+1] = 0; // green
 // capture.pixels[index+2] = 0; // blue
 // capture.pixels[index+3] = 0; // alpha

https://codepen.io/garethfoote/pen/YEvRzN?editors=0010

In this example above every pixels has had it's red value cranked up to maximum giving the
captured image a distinctly red tint.

Within the exercise code you will also find a call to the saveCanvas() function being used within the
keyPressed() function:

This 4 lines of code allows the webcam image to be saved and downloaded as a JPG when the
return key is pressed.

Exercise
Add the 16_webcam_capture directory to Atom
Set up a local web server and run it within the 16_webcam_capture directory.
Open the URL provided by the local web server in a browser.
Hit the enter key to download a frame of the webcam video
Uncomment the lines in the nested for loop and play with the rgba values:

 }
}
capture.updatePixels();
image(capture, 0, 0, width, height);

function keyPressed(){
 if (keyCode == RETURN) {
 saveCanvas("webcam", "jpg");
 }
}

capture.pixels[index] = 255; // red
capture.pixels[index+1] = 255; // green
capture.pixels[index+2] = 255; // blue
capture.pixels[index+3] = 255; // alpha

Revision #48
Created 4 November 2016 16:12:55
Updated 20 August 2018 11:13:02

