
A rotary encoder button is an input device that combines: a Rotary encoder — to detect
rotational direction (clockwise/counterclockwise) and steps and a Push button — to detect when
the knob is pressed down. This component is smaller in size and significantly cheaper than a
regular rotary encoder.

This rotary encoder is useful as a rotation sensor or selector and looks similar to potentiometers.
These rotary encoders rotate all the way around continuously and are divided up into 24
'segments'. Each segment has a clicky feeling to it, and each movement clockwise or counter-
clockwise causes the two switches to open and close.

How to use a Rotary Encoder Button

What is a Rotary Encoder Button?

Wiring

https://lab.arts.ac.uk/books/physical-computing/page/how-to-use-a-rotary-encoder
https://lab.arts.ac.uk/books/physical-computing/page/how-to-connect-a-push-button-or-switch
https://lab.arts.ac.uk/uploads/images/gallery/2025-06/6yB0b8FpCbVZV2Qj-image-1750946138782.png

1. Top 2 Pins:
one pin to D4
one pin to GND

2. Bottom 3 Pins:
Right Pin to D3
middle pin to GND
Left Pin to D2

EncoderStepCounter library will be used. We have a tutorial on how to install a library here.

Library

Getting started
#include <EncoderStepCounter.h>

const int pin1 = 2;
const int pin2 = 3;

// Create encoder instance:
EncoderStepCounter encoder(pin1, pin2);

https://lab.arts.ac.uk/uploads/images/gallery/2025-06/5rEytfCEkF3ebLod-image-1750945899877.png
https://github.com/M-Reimer/EncoderStepCounter
https://lab.arts.ac.uk/books/physical-computing/page/how-to-install-libraries

// encoder previous position:
int oldPosition = 0;

const int buttonPin = 4; // pushbutton pin
int lastButtonState = LOW; // last button state
int debounceDelay = 5; // debounce time for the button in ms

void setup() {
 Serial.begin(9600);
 // Initialize encoder
 encoder.begin();
 // Initialize interrupts
 attachInterrupt(digitalPinToInterrupt(pin1), interrupt, CHANGE);
 attachInterrupt(digitalPinToInterrupt(pin2), interrupt, CHANGE);
 // set the button pin as an input_pullup:
 pinMode(buttonPin, INPUT_PULLUP);
}

void loop() {
 // if you're not using interrupts, you need this in the loop:
 encoder.tick();

 // read encoder position:
 int position = encoder.getPosition();
 // read the pushbutton:
 int buttonState = digitalRead(buttonPin);
 // // if the button has changed:
 if (buttonState != lastButtonState) {
 // debounce the button:
 delay(debounceDelay);
 // if button is pressed:
 if (buttonState == LOW) {
 Serial.print("you pressed on position: ");
 Serial.println(position);
 }
 }
 // save current button state for next time through the loop:
 lastButtonState = buttonState;

 // reset the encoder after 24 steps:

 if (position % 24 == 0) {
 encoder.reset();
 position = encoder.getPosition();
 }
 // if there's been a change, print it:
 if (position != oldPosition) {
 Serial.println(position);
 oldPosition = position;
 }
}

// Call tick on every change interrupt
void interrupt() {
 encoder.tick();
}

Revision #2
Created 26 June 2025 13:51:10 by Joanne Leung
Updated 26 June 2025 13:59:33 by Joanne Leung

