
TensorFlow is an open-source machine learning framework developed by Google. It provides a
comprehensive ecosystem of tools, libraries, and community resources for building and deploying
machine learning models across a variety of platforms, from servers to mobile devices and
embedded systems.

With TensorFlow, developers can easily design, train, and deploy machine learning models for
various tasks such as image recognition, natural language processing, and more. TensorFlow offers
high-level APIs for building and training models, as well as lower-level operations for fine-grained
control and optimization.

TensorFlow Lite for Microcontrollers is a lightweight version of TensorFlow designed specifically for
microcontrollers and other resource-constrained devices. It enables developers to run small

Machine Learning with Physical
Computing - TensorFlow Lite & Arduino
Nano 33

What is TensorFlow?

How Machine Learning work with Physical Computing?

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/yoxCZoB1reww9Qu6-image-1715690437087.png

machine-learning models directly on microcontrollers, allowing for on-device inference without the
need for network connectivity or reliance on cloud services.

TensorFlow Lite for Microcontrollers provides tools and libraries for converting trained TensorFlow
models into a format suitable for microcontrollers, as well as APIs for integrating these models into
embedded applications. It supports a variety of microcontroller platforms and architectures,
making it accessible for a wide range of embedded development projects.

With TensorFlow Lite for Microcontrollers, developers can implement machine learning capabilities
directly on devices such as sensors, wearables, and IoT devices, enabling intelligent edge
computing and real-time inference without requiring constant communication with external
servers.

The Arduino Nano 33 BLE Series is a great choice to get started with embedded machine learning.
It is built upon the nRF52840 microcontroller and runs on Arm® Mbed™ OS.

What is Arduino Nano 33 BLE?

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/Hv9YHAaRwJr5P2u8-image-1715694764724.png

The Nano 33 BLE Series are tiny but come with a brunch of extras, including built-in connectivity
options such as Wi-Fi, Bluetooth, or LoRa, enabling seamless communication with other devices,
networks, or the internet, making them well-suited for IoT and wireless applications.

Some Nano 33 boards also feature integrated sensors such as accelerometers, gyroscopes,
magnetometers, and environmental sensors, providing built-in sensing capabilities for motion
detection, orientation tracking, environmental monitoring, and more.

In this tutorial, we are going to use the IMU sensor on the SENSE REV2 to record some gestures
data, train a model with the dataset and have Arduino classify movements based on the model.

This tutorial is developed based on the tutorial by Sandeep Mistry and Dominic Pajak. This tutorial
is modified for NANO 33 SENSE REV2 board. If you are using other NANO boards, please refer to
Mistry and Pajak's tutorial.

Software: Arduino IDE 1.8.19 [14/5/2024].

1. Go to Tools - Board - Board Management

Gesture Classification

Warning
Versions of everything are important for this to work. Make sure you download and install
the correct one AND have the right board!

Set up Arduino IDE

Install board packages

https://docs.arduino.cc/tutorials/nano-33-ble-sense/get-started-with-machine-learning

2. Search for Arduino Mbed OS Nano Boards

3. Choose and install Version 4.0.10
4. It may take a few minutes.
5. When it's done, you should able to choose Arduino Nano 33 BLE

TensorFlow library is not available from the library manager anymore, so you will need to do a
manual install. We are using an older version for this tutorial [14/5/2024]. Download the zip here.

For other and latest versions, please visit the official github page.

To use the IMU (inertial measurement unit) in Nano 33 BLE Rev2 and Nano 33 BLE Sense Rev2,
you need to use the Arduino_BMI270_BMM150 library instead of Arduino_LSM9DS1 which is used in all

Install TensorFlow library 2.4.0

Install IMU Library

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/USRaGcjYCjsM9rWU-mbedosnano.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/mK49th41vOxfCcqF-nano33ble.png
https://downloads.arduino.cc/libraries/github.com/bcmi-labs/Arduino_TensorFlowLite-2.4.0-ALPHA.zip
https://github.com/tensorflow/tflite-micro-arduino-examples

example code.

Replace #include <Arduino_LSM9DS1.h> with #include <Arduino_BMI270_BMM150.h> in all existing codes
if you are using Rev2 boards.

For more information about libraries for NANO 33 SENSE REV2, please visit here.

First, upload the below code to your Arduino, and see if any data coming through from the Serial
monitor.

Collect Data

/*
 IMU Capture
 This example uses the on-board IMU to start reading acceleration and gyroscope
 data from on-board IMU and prints it to the Serial Monitor for one second
 when the significant motion is detected.
 You can also use the Serial Plotter to graph the data.
 The circuit:
 - Arduino Nano 33 BLE or Arduino Nano 33 BLE Sense board.
 Created by Don Coleman, Sandeep Mistry
 Modified by Dominic Pajak, Sandeep Mistry
 This example code is in the public domain.
*/

#include <Arduino_BMI270_BMM150.h>

const float accelerationThreshold = 2.5; // threshold of significant in G's
const int numSamples = 119;

int samplesRead = numSamples;

void setup() {
 Serial.begin(9600);
 while (!Serial);

 if (!IMU.begin()) {
 Serial.println("Failed to initialize IMU!");
 while (1);
 }

https://support.arduino.cc/hc/en-us/articles/11729186296476-Use-the-new-sensor-libraries-for-Nano-33-BLE-Rev2-and-Nano-BLE-Sense-Rev2

 // print the header
 Serial.println("aX,aY,aZ,gX,gY,gZ");
}

void loop() {
 float aX, aY, aZ, gX, gY, gZ;

 // wait for significant motion
 while (samplesRead == numSamples) {
 if (IMU.accelerationAvailable()) {
 // read the acceleration data
 IMU.readAcceleration(aX, aY, aZ);

 // sum up the absolutes
 float aSum = fabs(aX) + fabs(aY) + fabs(aZ);

 // check if it's above the threshold
 if (aSum >= accelerationThreshold) {
 // reset the sample read count
 samplesRead = 0;
 break;
 }
 }
 }

 // check if the all the required samples have been read since
 // the last time the significant motion was detected
 while (samplesRead < numSamples) {
 // check if both new acceleration and gyroscope data is
 // available
 if (IMU.accelerationAvailable() && IMU.gyroscopeAvailable()) {
 // read the acceleration and gyroscope data
 IMU.readAcceleration(aX, aY, aZ);
 IMU.readGyroscope(gX, gY, gZ);

 samplesRead++;

 // print the data in CSV format
 Serial.print(aX, 3);
 Serial.print(',');

1. Stay in your neutral position with the sensor in your hand
2. Press the reset button on Arduino

 Serial.print(aY, 3);
 Serial.print(',');
 Serial.print(aZ, 3);
 Serial.print(',');
 Serial.print(gX, 3);
 Serial.print(',');
 Serial.print(gY, 3);
 Serial.print(',');
 Serial.print(gZ, 3);
 Serial.println();

 if (samplesRead == numSamples) {
 // add an empty line if it's the last sample
 Serial.println();
 }
 }
 }
}

Create CSV files

3. Go to the terminal and type in the command cat /dev/[serialPort] > [GESTURE].csv <- change
[serialPort] and [GESTURE]

4. Start moving with your sensor! Keep a 1-second interval and repeat the same movement
at least 10+ times.

5. When done, Press the reset button on Arduino.
6. The CSV file is created.

Repeat #1 to #6 for second, third, fourth....movements. In this tutorial, I am only using two
movements as data. Now I have my punch.csv and flex.csv ready, we can go to the browser.

We are going to use Google Colab to train our machine learning model with TensorFlow. Google
Colab is a free cloud-based platform provided by Google that allows users to write, execute, and
share Python code using a web-based interface. It provides a hosted Jupyter Notebook environment
that requires no setup or installation, making it easy for individuals and teams to collaborate on
Python projects, particularly in the fields of data science, machine learning, and artificial
intelligence.

You will need a Google account and make a copy of the notebook, if you are not sure about Google
Colab, please attend the GANs with Python workshop. It usually works better with Google Chrome.

Train a Model

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/2wonTZ1mt1CqivSz-screenshot-2024-05-14-at-14-06-00.png
https://colab.research.google.com/

1. Google Collab notebook: jo-arduino_tinyml.ipynb
2. TensorFlow Version supported by Google Colab: from 2.8.0rc0 to the latest [14/5/2024]

Click [#] , you will see a green tick next to it once it's completed. Go through the whole notebook
and get all of them completed one by one.

Warning
Your Google account and Colab should be in English to avoid any broken file path errors.

https://colab.research.google.com/drive/1NTu8slaseEcgjZJtJASnGJh_oC1_9wcP?usp=sharing
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/2v0m7Q1qbZsCor6h-screenshot-2024-05-14-at-14-22-05.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/cbvZPFvaJMtyWYDp-screenshot-2024-05-14-at-14-23-10.png

In the end, when you reached [18] , you will see model.h created in the content folder. Double click
and you will see the header file opened on the right-hand side.

Now go back to Arduino IDE.

Start Classification!

/*
 IMU Classifier
 This example uses the on-board IMU to start reading acceleration and gyroscope
 data from on-board IMU, once enough samples are read, it then uses a
 TensorFlow Lite (Micro) model to try to classify the movement as a known gesture.
 Note: The direct use of C/C++ pointers, namespaces, and dynamic memory is generally
 discouraged in Arduino examples, and in the future the TensorFlowLite library
 might change to make the sketch simpler.
 The circuit:
 - Arduino Nano 33 BLE or Arduino Nano 33 BLE Sense Rev2 board.
 Created by Don Coleman, Sandeep Mistry
 Modified by Dominic Pajak, Sandeep Mistry
 This example code is in the public domain.
*/

#include "Arduino_BMI270_BMM150.h"

#include <TensorFlowLite.h>
#include <tensorflow/lite/micro/all_ops_resolver.h>

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/5ekSB2ffFw00HiU0-screenshot-2024-05-14-at-14-28-23.png

#include <tensorflow/lite/micro/micro_error_reporter.h>
#include <tensorflow/lite/micro/micro_interpreter.h>
#include <tensorflow/lite/schema/schema_generated.h>
#include <tensorflow/lite/version.h>

#include "model.h"

const float accelerationThreshold = 2.5; // threshold of significant in G's
const int numSamples = 119;

int samplesRead = numSamples;

// global variables used for TensorFlow Lite (Micro)
tflite::MicroErrorReporter tflErrorReporter;

// pull in all the TFLM ops, you can remove this line and
// only pull in the TFLM ops you need, if would like to reduce
// the compiled size of the sketch.
tflite::AllOpsResolver tflOpsResolver;

const tflite::Model* tflModel = nullptr;
tflite::MicroInterpreter* tflInterpreter = nullptr;
TfLiteTensor* tflInputTensor = nullptr;
TfLiteTensor* tflOutputTensor = nullptr;

// Create a static memory buffer for TFLM, the size may need to
// be adjusted based on the model you are using
constexpr int tensorArenaSize = 8 * 1024;
byte tensorArena[tensorArenaSize] __attribute__((aligned(16)));

// array to map gesture index to a name
const char* GESTURES[] = {
 "punch",
 "flex"
};

const int arraySize = 2;

#define NUM_GESTURES (sizeof(GESTURES) / sizeof(GESTURES[0]))

int findHighestIndex(float arr[], int size) {
 if (size == 0) {
 return -1; // Return -1 if the array is empty
 }
 int maxIndex = 0; // Initialize maxIndex with the index of the first element of the array
 for (int i = 1; i < size; i++) {
 if (arr[i] > arr[maxIndex]) {
 maxIndex = i;
 }
 }
 return maxIndex;
}

void setup() {
 Serial.begin(9600);
 while (!Serial);

 // initialize the IMU
 if (!IMU.begin()) {
 Serial.println("Failed to initialize IMU!");
 while (1);
 }

 // print out the samples rates of the IMUs
 Serial.print("Accelerometer sample rate = ");
 Serial.print(IMU.accelerationSampleRate());
 Serial.println(" Hz");
 Serial.print("Gyroscope sample rate = ");
 Serial.print(IMU.gyroscopeSampleRate());
 Serial.println(" Hz");

 Serial.println();

 // get the TFL representation of the model byte array
 tflModel = tflite::GetModel(model);
 if (tflModel->version() != TFLITE_SCHEMA_VERSION) {
 Serial.println("Model schema mismatch!");
 while (1);

 }

 // Create an interpreter to run the model
 tflInterpreter = new tflite::MicroInterpreter(tflModel, tflOpsResolver, tensorArena, tensorArenaSize,
&tflErrorReporter);

 // Allocate memory for the model's input and output tensors
 tflInterpreter->AllocateTensors();

 // Get pointers for the model's input and output tensors
 tflInputTensor = tflInterpreter->input(0);
 tflOutputTensor = tflInterpreter->output(0);
}

void loop() {
 float aX, aY, aZ, gX, gY, gZ;

 // wait for significant motion
 while (samplesRead == numSamples) {
 if (IMU.accelerationAvailable()) {
 // read the acceleration data
 IMU.readAcceleration(aX, aY, aZ);

 // sum up the absolutes
 float aSum = fabs(aX) + fabs(aY) + fabs(aZ);

 // check if it's above the threshold
 if (aSum >= accelerationThreshold) {
 // reset the sample read count
 samplesRead = 0;
 break;
 }
 }
 }

 // check if the all the required samples have been read since
 // the last time the significant motion was detected
 while (samplesRead < numSamples) {
 // check if new acceleration AND gyroscope data is available
 if (IMU.accelerationAvailable() && IMU.gyroscopeAvailable()) {

Click on the small arrow on the right and choose New Tab . Name the tab model.h and copy & paste
from the Google Colab model.h file.

 // read the acceleration and gyroscope data
 IMU.readAcceleration(aX, aY, aZ);
 IMU.readGyroscope(gX, gY, gZ);

 // normalize the IMU data between 0 to 1 and store in the model's
 // input tensor
 tflInputTensor->data.f[samplesRead * 6 + 0] = (aX + 4.0) / 8.0;
 tflInputTensor->data.f[samplesRead * 6 + 1] = (aY + 4.0) / 8.0;
 tflInputTensor->data.f[samplesRead * 6 + 2] = (aZ + 4.0) / 8.0;
 tflInputTensor->data.f[samplesRead * 6 + 3] = (gX + 2000.0) / 4000.0;
 tflInputTensor->data.f[samplesRead * 6 + 4] = (gY + 2000.0) / 4000.0;
 tflInputTensor->data.f[samplesRead * 6 + 5] = (gZ + 2000.0) / 4000.0;

 samplesRead++;

 if (samplesRead == numSamples) {
 // Run inferencing
 TfLiteStatus invokeStatus = tflInterpreter->Invoke();
 if (invokeStatus != kTfLiteOk) {
 Serial.println("Invoke failed!");
 while (1);
 return;
 }

 int highestIndex = findHighestIndex(tflOutputTensor->data.f, arraySize);
 Serial.print("This is a ");
 Serial.print(GESTURES[highestIndex]);
 Serial.println("!");

 Serial.println();
 }
 }
 }
}

Upload the code and go to the serial monitor. Do one of the gestures you trained. You will see how
confident the machine is in classifying each gesture and decide which gesture you just did.

HAVE FUN!

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/NSUZTfz8wG2kcpR7-screenshot-2024-05-14-at-14-35-32.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/WMN5eEch4g3sxpnB-screenshot-2024-05-14-at-14-32-46.png

Revision #10
Created 14 May 2024 12:20:57 by Joanne Leung
Updated 16 December 2024 10:30:07 by Joanne Leung

