Machine Learning with Physical
Computing - TensorFlow Lite & Arduino

Nano 33

What is TensorFlow?

TensorFlow is an open-source machine learning framework developed by Google. It provides a
comprehensive ecosystem of tools, libraries, and community resources for building and deploying
machine learning models across a variety of platforms, from servers to mobile devices and
embedded systems.

With TensorFlow, developers can easily design, train, and deploy machine learning models for
various tasks such as image recognition, natural language processing, and more. TensorFlow offers
high-level APIs for building and training models, as well as lower-level operations for fine-grained
control and optimization.

TensorFlow

How Machine Learning work with Physical Computing?

TensorFlow Lite for Microcontrollers is a lightweight version of TensorFlow designed specifically for
microcontrollers and other resource-constrained devices. It enables developers to run small

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/yoxCZoB1reww9Qu6-image-1715690437087.png

machine-learning models directly on microcontrollers, allowing for on-device inference without the
need for network connectivity or reliance on cloud services.

TensorFlow Lite for Microcontrollers provides tools and libraries for converting trained TensorFlow
models into a format suitable for microcontrollers, as well as APIs for integrating these models into
embedded applications. It supports a variety of microcontroller platforms and architectures,
making it accessible for a wide range of embedded development projects.

With TensorFlow Lite for Microcontrollers, developers can implement machine learning capabilities
directly on devices such as sensors, wearables, and |oT devices, enabling intelligent edge
computing and real-time inference without requiring constant communication with external
servers.

What is Arduino Nano 33 BLE?

The Arduino Nano 33 BLE Series is a great choice to get started with embedded machine learning.
It is built upon the nRF52840 microcontroller and runs on Arm® Mbed™ OS.

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/Hv9YHAaRwJr5P2u8-image-1715694764724.png

The Nano 33 BLE Series are tiny but come with a brunch of extras, including built-in connectivity
options such as Wi-Fi, Bluetooth, or LoRa, enabling seamless communication with other devices,
networks, or the internet, making them well-suited for loT and wireless applications.

Some Nano 33 boards also feature integrated sensors such as accelerometers, gyroscopes,
magnetometers, and environmental sensors, providing built-in sensing capabilities for motion
detection, orientation tracking, environmental monitoring, and more.

Gesture Classification

In this tutorial, we are going to use the IMU sensor on the SENSE REV2 to record some gestures
data, train a model with the dataset and have Arduino classify movements based on the model.

This tutorial is developed based on the tutorial by Sandeep Mistry and Dominic Pajak. This tutorial
is modified for NANO 33 SENSE REV2 board. If you are using other NANO boards, please refer to
Mistry and Pajak's tutorial.

Warning
Versions of everything are important for this to work. Make sure you download and install
the correct one AND have the right board!

Set up Arduino IDE

Software: Arduino IDE 1.8.19 [14/5/2024].

Install board packages

1. Go to Tools - Board - Board Management

https://docs.arduino.cc/tutorials/nano-33-ble-sense/get-started-with-machine-learning

2. Search for Arduino Mbed OS Nano Boards

| BN | Boards Manager

Type All &

Arduino Mbed OS Nano Boards

by Arduino version 4.0.10 INSTALLED

Boards included in this package:

Arduino Nano 33 BLE, Arduino Nano 33 BLE Sense, Arduino Nano RP2040 Connect.
Online Help

More Info

~Arduino Mbed OS Nicla Boards

by Arduino

Boards included in this package:

Nicla Sense ME, Nicla Voice, Nicla Vision.
Online Help

More Info

4.1.3

Install

Arduino Mbed OS Opta Boards

TP W)

Close

3. Choose and install Version 4.0.10
4. It may take a few minutes.

5. When it's done, you should able to choose Arduino Nano 33 BLE
Arduino File Edit Sketch |

Auto Format
Archive Sketch
Fix Encoding & Reload

Manage Libraries...

Serial Monitor
Serial Plotter

WIFi101] WiFININA Firmware Updater

Board: "Arduino Nano 33 BLE" Boards Manager...
Port: "/dev/cu.usbmodem2101 (Arduino Nano 33 BLE)"
Get Board Info

Arduino AVR Boards
Arduino Mbed OS Nano Boards

>
> Arduino Nano RP2040 Col

Programmer: "ARM CMSIS-DAP compatible" Bare Conductive Boards (in sketchbook) > /ArduinoNano 38 BLE

Burn Bootloader

Install TensorFlow library 2.4.0

TensorFlow library is not available from the library manager anymore, so you will need to do a

manual install. We are using an older version for this tutorial [14/5/2024]. Download the zip here.

For other and latest versions, please visit the official github page.

Install IMU Library

To use the IMU (inertial measurement unit) in Nano 33 BLE Rev2 and Nano 33 BLE Sense Rev2,
you need to use the Arduino BMI270 BMM150 library instead of Arduino LSM9DS1 which is used in all

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/USRaGcjYCjsM9rWU-mbedosnano.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/mK49th41vOxfCcqF-nano33ble.png
https://downloads.arduino.cc/libraries/github.com/bcmi-labs/Arduino_TensorFlowLite-2.4.0-ALPHA.zip
https://github.com/tensorflow/tflite-micro-arduino-examples

example code.

Replace #include <Arduino LSM9DS1.h> with #include <Arduino BMI270 BMM150.h> in all existing codes
if you are using Rev2 boards.

For more information about libraries for NANO 33 SENSE REV2, please visit here.

Collect Data

First, upload the below code to your Arduino, and see if any data coming through from the Serial
monitor.

/*
IMU Capture
This example uses the on-board IMU to start reading acceleration and gyroscope
data from on-board IMU and prints it to the Serial Monitor for one second
when the significant motion is detected.
You can also use the Serial Plotter to graph the data.
The circuit:
- Arduino Nano 33 BLE or Arduino Nano 33 BLE Sense board.
Created by Don Coleman, Sandeep Mistry
Modified by Dominic Pajak, Sandeep Mistry
This example code is in the public domain.

*/
#include <Arduino_BMI270_BMM150.h>

const float accelerationThreshold = 2.5; // threshold of significant in G's

const int numSamples = 119;
int samplesRead = numSamples;

void setup() {
Serial.begin(9600);

while (!Serial);

if (1IMU.begin()) {

Serial.printin("Failed to initialize IMU!");
while (1);
}

https://support.arduino.cc/hc/en-us/articles/11729186296476-Use-the-new-sensor-libraries-for-Nano-33-BLE-Rev2-and-Nano-BLE-Sense-Rev2

// print the header
Serial.printin("aX,aY,aZ,gX,qY,gZ");
}

void loop() {
float aX, aY, aZ, gX, gY, gZ;

/I wait for significant motion
while (samplesRead == numSamples) {
if (IMU.accelerationAvailable()) {
// read the acceleration data

IMU.readAcceleration(aX, aY, aZ);

// sum up the absolutes

float aSum = fabs(aX) + fabs(aY) + fabs(aZz);

/I check if it's above the threshold
if (@Sum >= accelerationThreshold) {
// reset the sample read count
samplesRead = 0;
break;
}
}
}

/I check if the all the required samples have been read since
/l the last time the significant motion was detected
while (samplesRead < numSamples) {
// check if both new acceleration and gyroscope data is
/] available
if (IMU.accelerationAvailable() && IMU.gyroscopeAvailable()) {
// read the acceleration and gyroscope data
IMU.readAcceleration(aX, aY, aZ);

IMU.readGyroscope(gX, gY, gZ);

samplesRead++;

// print the data in CSV format

Serial.print(aX, 3);

Serial.print(',");

Serial.print(aY, 3);
Serial.print(',');
Serial.print(az, 3);
Serial.print(',");
Serial.print(gX, 3);
Serial.print(',");
Serial.print(gY, 3);
Serial.print(',');
Serial.print(gZ, 3);

Serial.printin();

if (samplesRead == numSamples) {
// add an empty line if it's the last sample
Serial.printin();
}
}
}
}

Create CSV files

1. Stay in your neutral position with the sensor in your hand
2. Press the reset button on Arduino

3. Go to the terminal and type in the command cat /dev/[serialPort] > [GESTURE].csv <- change
[serialPort] and [GESTURE]

000 M joanneleung — -bash — 80x24

MB-C3884:~ joanneleung$ cat /dev/cu.usbmodem21el > punch.csvl

4. Start moving with your sensor! Keep a 1-second interval and repeat the same movement
at least 10+ times.

5. When done, Press the reset button on Arduino.

6. The CSV file is created.

Repeat #1 to #6 for second, third, fourth....movements. In this tutorial, | am only using two
movements as data. Now | have my punch.csv and flex.csv ready, we can go to the browser.

Train a Model

We are going to use Google Colab to train our machine learning model with TensorFlow. Google
Colab is a free cloud-based platform provided by Google that allows users to write, execute, and
share Python code using a web-based interface. It provides a hosted Jupyter Notebook environment
that requires no setup or installation, making it easy for individuals and teams to collaborate on
Python projects, particularly in the fields of data science, machine learning, and artificial
intelligence.

You will need a Google account and make a copy of the notebook, if you are not sure about Google
Colab, please attend the GANs with Python workshop. It usually works better with Google Chrome.

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/2wonTZ1mt1CqivSz-screenshot-2024-05-14-at-14-06-00.png
https://colab.research.google.com/

Warning
Your Google account and Colab should be in English to avoid any broken file path errors.

1. Google Collab notebook: jo-arduino _tinyml.ipynb
2. TensorFlow Version supported by Google Colab: from 2.8.0rcO to the latest [14/5/2024]

 arduino_tinymlipynb ¥r

File Edit View Insert Runtime Tools Help

E] Comment 2 Share

RAM

= Files 0o 5% | SEmb e " Disk v ~

B C B ® v o B2z PO

- -
» [sample_data
. flex.csv

. gesture_model.tflite A R D U I N 0

. modelh

B punch.csv v Tiny ML on Arduino

Gesture recognition tutorial

» Sandeep Mistry - Arduino
« Don Coleman - Chariot Solutions

v Setup Python Environment

The next cell sets up the dependencies in required for the notebook, run it.

lapt-get -qq install xxd
DU — 7 R !pip install pandas numpy matplotlib

Connected to Python 3 Google Compute Engine backend

Click [#1, you will see a green tick next to it once it's completed. Go through the whole notebook
and get all of them completed one by one.

lapt—get —-qq install xxd
'pip install pandas numpy matplotlib
'pip install tensorflow==2.12.0

https://colab.research.google.com/drive/1NTu8slaseEcgjZJtJASnGJh_oC1_9wcP?usp=sharing
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/2v0m7Q1qbZsCor6h-screenshot-2024-05-14-at-14-22-05.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/cbvZPFvaJMtyWYDp-screenshot-2024-05-14-at-14-23-10.png

In the end, when you reached [18], you will see model.h created in the content folder. Double click
and you will see the header file opened on the right-hand side.

coO A arduino_tinymlipynb ¢
-

B Comment
File Edit View Insert Runtime Tools Help Ls ved at 11:55

Files M X + Code + Text

model.h X
B c B ® v Encode the Model in an Arduino Header File TR
—

» [sample_data

. flex.csv

B gesture_model tfite v 18]

B modelh lecho ' t unsigned char model[] = {" > /content/model.h
: lcat model.tflite | xxd -i >> /content/model.h
. punch.csv lecho “};" >> /content/model.h

The next cell creates a constant byte array that contains the TFlite model. Import it as a tab with
the sketch below.

mport os

model_h_size = os.path.getsize("model.h")
print(f" der 0 h, is {model_h_size
print(" refresh if ne

Header file, model.h, is 914,428 bytes.

Open the side panel (refresh if needed). Double click model.h to download the

Classifying IMU Data

Now it's time to switch back to the tutorial instructions and run our new model on the Arduino

S Nano 33 BLE Sense to classify the accelerometer and gyroscope data.

=

DI — o1 e R

Connected to Python 3 Google Compute Engine backend

Start Classification!

Now go back to Arduino IDE.

/*

IMU Classifier

This example uses the on-board IMU to start reading acceleration and gyroscope

data from on-board IMU, once enough samples are read, it then uses a

TensorFlow Lite (Micro) model to try to classify the movement as a known gesture.

Note: The direct use of C/C++ pointers, namespaces, and dynamic memory is generally
discouraged in Arduino examples, and in the future the TensorFlowLite library
might change to make the sketch simpler.

The circuit:

- Arduino Nano 33 BLE or Arduino Nano 33 BLE Sense Rev2 board.

Created by Don Coleman, Sandeep Mistry

Modified by Dominic Pajak, Sandeep Mistry

This example code is in the public domain.

*/
#include "Arduino_BMI270_BMM150.h"

#include <TensorFlowLite.h>

#include <tensorflow/lite/micro/all_ops_resolver.h>

&, share & (F

RAM
Disk

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/5ekSB2ffFw00HiU0-screenshot-2024-05-14-at-14-28-23.png

#include <tensorflow/lite/micro/micro_error_reporter.h>
#include <tensorflow/lite/micro/micro_interpreter.h>
#include <tensorflow/lite/schema/schema_generated.h>

#include <tensorflow/lite/version.h>

#include "model.h"

const float accelerationThreshold = 2.5; // threshold of significant in G's

const int numSamples = 119;

int samplesRead = numSamples;

// global variables used for TensorFlow Lite (Micro)

tflite::MicroErrorReporter tflErrorReporter;

// pull in all the TFLM ops, you can remove this line and
// only pull in the TFLM ops you need, if would like to reduce
// the compiled size of the sketch.

tflite::AllOpsResolver tflOpsResolver;

const tflite::Model* tfiIModel = nullptr;
tflite::Microlnterpreter* tflinterpreter = nullptr;
TfLiteTensor* tflinputTensor = nullptr;

TfLiteTensor* tflOutputTensor = nullptr;

// Create a static memory buffer for TFLM, the size may need to
// be adjusted based on the model you are using
constexpr int tensorArenaSize = 8 * 1024;

byte tensorArena[tensorArenaSize] _ attribute_ ((aligned(16)));

/] array to map gesture index to a name
const char* GESTURES[] = {
"punch®,

"flex"

+

const int arraySize = 2;

#define NUM_GESTURES (sizeof(GESTURES) / sizeof(GESTURES[0]))

int findHighestindex(float arr[], int size) {
if (size ==0) {
return -1; // Return -1 if the array is empty
}
int maxIindex = 0; // Initialize maxIndex with the index of the first element of the array
for (inti=1;i<size; i++) {
if (arr[i] > arrfmaxIndex]) {

maxIndex = i;

}

return maxindex;

void setup() {
Serial.begin(9600);

while (!Serial);

/[initialize the IMU

if (1IMU.begin()) {
Serial.printin("Failed to initialize IMU!");
while (1);

}

// print out the samples rates of the IMUs
Serial.print("Accelerometer sample rate = ");
Serial.print(IMU.accelerationSampleRate());
Serial.printin(" Hz");

Serial.print("Gyroscope sample rate = ");
Serial.print(IMU.gyroscopeSampleRate());

Serial.printin(" Hz");

Serial.printin();

/I get the TFL representation of the model byte array

tfIModel = tflite::GetModel(model);

if (tfiIModel->version() != TFLITE_SCHEMA_VERSION) {
Serial.printIn("Model schema mismatch!");

while (1);

/] Create an interpreter to run the model

tflinterpreter = new tflite::Microlnterpreter(tfiModel, tflOpsResolver, tensorArena, tensorArenaSize,

&tflErrorReporter);

// Allocate memory for the model's input and output tensors

tflinterpreter->AllocateTensors();

/! Get pointers for the model's input and output tensors
tflinputTensor = tflinterpreter->input(0);

tflOutputTensor = tflinterpreter->output(0);

void loop() {
float aX, aY, aZ, gX, g¥, gZ;

/1 wait for significant motion
while (samplesRead == numSamples) {
if (IMU.accelerationAvailable()) {
// read the acceleration data

IMU.readAcceleration(aX, aY, aZ);

// sum up the absolutes

float aSum = fabs(aX) + fabs(aY) + fabs(aZ);

/I check if it's above the threshold
if (@Sum >= accelerationThreshold) {
// reset the sample read count
samplesRead = 0;
break;
}
}
}

// check if the all the required samples have been read since
// the last time the significant motion was detected
while (samplesRead < numSamples) {

/l check if new acceleration AND gyroscope data is available

if (IMU.accelerationAvailable() && IMU.gyroscopeAvailable()) {

// read the acceleration and gyroscope data
IMU.readAcceleration(aX, aY, aZ);

IMU.readGyroscope(gX, gY, gZ);

// normalize the IMU data between 0 to 1 and store in the model's

// input tensor

tflinputTensor->data.f[samplesRead * 6 + 0] = (aX + 4.0) / 8.0;
tflinputTensor->data.f[samplesRead * 6 + 1] = (aY + 4.0) / 8.0;
tflinputTensor->data.f[samplesRead * 6 + 2] = (aZ + 4.0) / 8.0;
tflinputTensor->data.f[samplesRead * 6 + 3] = (gX + 2000.0) / 4000.0;
tflinputTensor->data.f[samplesRead * 6 + 4] = (gY + 2000.0) / 4000.0;
tflinputTensor->data.f[samplesRead * 6 + 5] = (gZ + 2000.0) / 4000.0;

samplesRead++;

if (samplesRead == numSamples) {
// Run inferencing
TfLiteStatus invokeStatus = tflinterpreter->Invoke();
if (invokeStatus != kTfLiteOk) {
Serial.printin("Invoke failed!");
while (1);
return;

}

int highestindex = findHighestindex(tflOutputTensor->data.f, arraySize);
Serial.print("This is a ");
Serial.print(GESTURES[highestindex]);

Serial.printin("!");

Serial.printin();
}
}
}
}

Click on the small arrow on the right and choose New Tab . Name the tab model.h and copy & paste
from the Google Colab model.h file.

TensorFlow_IMU_classifier | Arduino 1.8.19

TensorFlow_IMU_classifier

134 // check if the all the required samples have been read since Rename

135 // the last time the significant motion was detected

136 while (samplesRead < numSamples) { Delete

137 // check if new acceleration AND gyroscope data is available q =
138 if (IMU.accelerationAvailable() &gyIMU.gs'roscopef\vaﬂable()) { Previgusilab \:ﬁ'-
139 // read the acceleration and gyroscope data Next Tab %t
140 IMU.readAcceleration(aX, a¥, aZ);)
141 IMU. readGyroscope(gX, Y, gZ); TensorFlow_IMU_classifier
142

143 // normalize the IMU data between @ to 1 and store in the model's

144 // input tensor

145 tflInputTensor->data.f[samplesRead * 6 + @] = (aX + 4.0) / 8.9;

146 tflInputTensor->data.f[samplesRead * 6 + 1] = (a¥Y + 4.@) / 8.0;

147 tflInputTensor->data.f[samplesRead * 6 + 2] = (aZ + 4.0) / 8.0;

148 tflInputTensor->data.f[samplesRead * 6 + 3] = (gX + 2000.0) / 4000.0;

149 tflInputTensor->data.f[samplesRead * 6 + 4] = (gY + 2000.0) / 4000.0;

150 tflInputTensor->data.f[samplesRead * 6 + 5] = (gZ + 2000.0) / 4000.0;

151

152 samplesRead++;

153

154 if (samplesRead == numSamples) {

155 // Run inferencing

156 TfLiteStatus invokeStatus = tfllnterpreter->Invoke();

157 if (invokeStatus != kTfLiteOk) {

158 Serial.println("Invoke failed!");

159 while (1);

160 return;

161 }

162

163

164 int highestIndex = findHighestIndex(tflOutputTensor->data.f, arraySize);

165 Serial.print("This is a ");

166 Serial.print(GESTURES[highestIndex]);

167 Serial.println("!1");

168

169 Serial.printlnQ);

170 }

171 }

172

Arduino Nano 33 BLE on /dev/cu.usbmodem2101

Upload the code and go to the serial monitor. Do one of the gestures you trained. You will see how
confident the machine is in classifying each gesture and decide which gesture you just did.

[NON) [dev/cu.usbmodem2101
Send
punch: ©.999995
flex: 0.000004
This is a punch
Autoscroll Show timestamp Newline 9600 baud | Clear output |

HAVE FUN!

https://lab.arts.ac.uk/uploads/images/gallery/2024-05/NSUZTfz8wG2kcpR7-screenshot-2024-05-14-at-14-35-32.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-05/WMN5eEch4g3sxpnB-screenshot-2024-05-14-at-14-32-46.png

Revision #10
Created 14 May 2024 12:20:57 by Joanne Leung
Updated 16 December 2024 10:30:07 by Joanne Leung

