
Using MatrixPortal M4 for animation

How to use MatrixPortal M4 for animation
We have another tutorial for setting up the MatrixPortal board and covering the basics. This
tutorial will focus on creating an animation to display on a 64x32 matrix.

Creating the Spitesheet

CircuitPython and libraries versions
In this tutorial, we are using CircuitPython 9.0.5 (11/10/2024), all libraries and code used are
compatible with this version. Please double-check the latest version of CircuitPython you
have installed and use updated and compatible libraries.

https://lab.arts.ac.uk/books/physical-computing/page/how-to-use-matrixportal-m4
https://lab.arts.ac.uk/uploads/images/gallery/2024-10/iPvQNKWJghNjsvFg-img-5497.jpg


A spritesheet is a single image file that contains a collection of smaller images (called sprites)
arranged in a grid or some other layout. These individual sprites can represent various frames of
an animation, characters, objects, or other visual elements in a video game or graphic application.

We will need to use a bitmap spitesheet. If you just want to test the code, you can download the
test.bmp  and skip this part for now.

1. Piskel
Piskel is a free online editor for animated sprites & pixel art.

Go to resize  to set the canvas size to 64 x 32 px
Draw whatever you want
Add new frame  and draw
until you finish

https://www.piskelapp.com/
https://lab.arts.ac.uk/uploads/images/gallery/2024-10/5hQJ5hLlqktZ0Ejh-piskel.png


Go to EXPORT
Select PNG
Change Columns  to 1
Download
You now have a very long PNG file

2. Photoshop

https://lab.arts.ac.uk/uploads/images/gallery/2024-10/mD1GtYZtfcMGoLq4-screenshot-2024-10-11-at-12-04-56.png


Open the image with Photoshop
Save a copy in BMP format
Choose Windows  (doesn't matter what computer you use) and 16 Bit
You now have a ready-to-go spitesheet BMP file

Importing the Image
1. Create a folder called bmp  in the CIRCUITPY drive.
2. Copy the bitmap file you have created into the folder.

Code
# SPDX-FileCopyrightText: 2020 John Park for Adafruit Industries
#
# SPDX-License-Identifier: MIT

https://lab.arts.ac.uk/uploads/images/gallery/2024-10/j1jGtqfGRLhSVxYb-bmp-format.png


import time
import os
import board
import displayio
from digitalio import DigitalInOut, Pull
from adafruit_matrixportal.matrix import Matrix
from adafruit_debouncer import Debouncer

SPRITESHEET_FOLDER = "/bmp"
DEFAULT_FRAME_DURATION = 0.1  # 100ms

FRAME_DURATION_OVERRIDES = {
    "KIRBY.bmp": 0.05,
}

# --- Display setup ---
matrix = Matrix(width=64, height=64, bit_depth=6)
sprite_group = displayio.Group()
matrix.display.root_group = sprite_group

file_list = sorted(
    [
        f
        for f in os.listdir(SPRITESHEET_FOLDER)
        if (f.endswith(".bmp") and not f.startswith("."))
    ]
)

if len(file_list) == 0:
    raise RuntimeError("No images found")

current_image = None
current_frame = 0
current_loop = 0
frame_count = 0
frame_duration = DEFAULT_FRAME_DURATION
direction = 1 #1 for forward, -1 for backward

def load_image():



    """
    Load an image as a sprite
    """
    # pylint: disable=global-statement
    global current_frame, current_loop, frame_count, frame_duration
    while sprite_group:
        sprite_group.pop()

    filename = SPRITESHEET_FOLDER + "/" + file_list[current_image]

    # # CircuitPython 7+ compatible
    bitmap = displayio.OnDiskBitmap(filename)
    sprite = displayio.TileGrid(
         bitmap,
         pixel_shader=bitmap.pixel_shader,
         tile_width=bitmap.width,
         tile_height=matrix.display.height,
     )

    sprite_group.append(sprite)

    current_frame = 0
    current_loop = 0
    frame_count = int(bitmap.height / matrix.display.height)
    frame_duration = DEFAULT_FRAME_DURATION
    if file_list[current_image] in FRAME_DURATION_OVERRIDES:
        frame_duration = FRAME_DURATION_OVERRIDES[file_list[current_image]]
    direction = 1

def advance_image():
    """
    Advance to the next image in the list and loop back at the end
    """
    # pylint: disable=global-statement
    global current_image
    if current_image is not None:
        current_image += 1
    if current_image is None or current_image >= len(file_list):
        current_image = 0
    load_image()



def advance_frame():
    """
    Advance to the next frame and loop back at the end
    """
    # pylint: disable=global-statement
    global current_frame, current_loop, direction
    current_frame += direction
    if current_frame >= frame_count:
        current_frame = frame_count - 1
        direction = -1  # Reverse direction
    elif current_frame < 0:
        current_frame = 0
        direction = 1  # Forward direction
    sprite_group[0][0] = current_frame

advance_image()

while True:
    advance_frame()
    time.sleep(frame_duration)

Revision #3
Created 11 October 2024 10:46:03 by Joanne Leung
Updated 11 October 2024 11:27:00 by Joanne Leung


