
We have another tutorial for setting up the MatrixPortal board and covering the basics. This
tutorial will focus on creating an animation to display on a 64x32 matrix.

Using MatrixPortal M4 for animation

How to use MatrixPortal M4 for animation

CircuitPython and libraries versions
In this tutorial, we are using CircuitPython 9.0.5 (11/10/2024), all libraries and code used are
compatible with this version. Please double-check the latest version of CircuitPython you
have installed and use updated and compatible libraries.

Creating the Spitesheet

https://lab.arts.ac.uk/books/physical-computing/page/how-to-use-matrixportal-m4
https://lab.arts.ac.uk/uploads/images/gallery/2024-10/iPvQNKWJghNjsvFg-img-5497.jpg

A spritesheet is a single image file that contains a collection of smaller images (called sprites)
arranged in a grid or some other layout. These individual sprites can represent various frames of
an animation, characters, objects, or other visual elements in a video game or graphic application.

We will need to use a bitmap spitesheet. If you just want to test the code, you can download the
test.bmp and skip this part for now.

Piskel is a free online editor for animated sprites & pixel art.

Go to resize to set the canvas size to 64 x 32 px
Draw whatever you want
Add new frame and draw
until you finish

1. Piskel

https://www.piskelapp.com/
https://lab.arts.ac.uk/uploads/images/gallery/2024-10/5hQJ5hLlqktZ0Ejh-piskel.png

Go to EXPORT
Select PNG
Change Columns to 1
Download
You now have a very long PNG file

2. Photoshop

https://lab.arts.ac.uk/uploads/images/gallery/2024-10/mD1GtYZtfcMGoLq4-screenshot-2024-10-11-at-12-04-56.png

Open the image with Photoshop
Save a copy in BMP format
Choose Windows (doesn't matter what computer you use) and 16 Bit
You now have a ready-to-go spitesheet BMP file

1. Create a folder called bmp in the CIRCUITPY drive.
2. Copy the bitmap file you have created into the folder.

Importing the Image

Code
SPDX-FileCopyrightText: 2020 John Park for Adafruit Industries
#
SPDX-License-Identifier: MIT

https://lab.arts.ac.uk/uploads/images/gallery/2024-10/j1jGtqfGRLhSVxYb-bmp-format.png

import time
import os
import board
import displayio
from digitalio import DigitalInOut, Pull
from adafruit_matrixportal.matrix import Matrix
from adafruit_debouncer import Debouncer

SPRITESHEET_FOLDER = "/bmp"
DEFAULT_FRAME_DURATION = 0.1 # 100ms

FRAME_DURATION_OVERRIDES = {
 "KIRBY.bmp": 0.05,
}

--- Display setup ---
matrix = Matrix(width=64, height=64, bit_depth=6)
sprite_group = displayio.Group()
matrix.display.root_group = sprite_group

file_list = sorted(
 [
 f
 for f in os.listdir(SPRITESHEET_FOLDER)
 if (f.endswith(".bmp") and not f.startswith("."))
]
)

if len(file_list) == 0:
 raise RuntimeError("No images found")

current_image = None
current_frame = 0
current_loop = 0
frame_count = 0
frame_duration = DEFAULT_FRAME_DURATION
direction = 1 #1 for forward, -1 for backward

def load_image():

 """
 Load an image as a sprite
 """
 # pylint: disable=global-statement
 global current_frame, current_loop, frame_count, frame_duration
 while sprite_group:
 sprite_group.pop()

 filename = SPRITESHEET_FOLDER + "/" + file_list[current_image]

 # # CircuitPython 7+ compatible
 bitmap = displayio.OnDiskBitmap(filename)
 sprite = displayio.TileGrid(
 bitmap,
 pixel_shader=bitmap.pixel_shader,
 tile_width=bitmap.width,
 tile_height=matrix.display.height,
)

 sprite_group.append(sprite)

 current_frame = 0
 current_loop = 0
 frame_count = int(bitmap.height / matrix.display.height)
 frame_duration = DEFAULT_FRAME_DURATION
 if file_list[current_image] in FRAME_DURATION_OVERRIDES:
 frame_duration = FRAME_DURATION_OVERRIDES[file_list[current_image]]
 direction = 1

def advance_image():
 """
 Advance to the next image in the list and loop back at the end
 """
 # pylint: disable=global-statement
 global current_image
 if current_image is not None:
 current_image += 1
 if current_image is None or current_image >= len(file_list):
 current_image = 0
 load_image()

def advance_frame():
 """
 Advance to the next frame and loop back at the end
 """
 # pylint: disable=global-statement
 global current_frame, current_loop, direction
 current_frame += direction
 if current_frame >= frame_count:
 current_frame = frame_count - 1
 direction = -1 # Reverse direction
 elif current_frame < 0:
 current_frame = 0
 direction = 1 # Forward direction
 sprite_group[0][0] = current_frame

advance_image()

while True:
 advance_frame()
 time.sleep(frame_duration)

Revision #3
Created 11 October 2024 10:46:03 by Joanne Leung
Updated 16 December 2024 10:30:07 by Joanne Leung

