Interactive Projections

If you're interested in creating position-based interactive projections, the first step would be to map
the space and track anyone/anything within it. This can be done in multiple ways, this tutorial will
briefly introduce you to two different but related techniques:

Object detection and tracking in OpenCV

For most applications, your webcam and a bit of OpenCV script will be enough to analyse images
and detect people or objects in real-time. If you haven't heard of OpenCV, it's a powerful Open
source Computer Vision library and includes a variety of examples which can be implemented in
Touchdesigner, using the Script TOP. Now it's important to know that we can't just copy and paste
an OpenCV example into Touchdesigner, we will have to adapt various parameters to link our
VideoDeviceln TOP, import the correct libraries etc. A variety of resources are available online if
you wish to learn more about OpenCV, an in-depth explanation of our following steps is also

available here: https://www.youtube.com/watch?v=1Uw2PWTR XM&t=529s.

Begin by connecting your VideoDeviceln TOP, to a Threshold Top and playing around with the
Threshold value; Ideally you want to get completely transparent background and a white solid
shape whenever an object is positioned within the monitored area. Experiment with Level TOP and
Blur TOP to achieve a polished result.

After polishing your input, connect it to a new NullTOP, we'll rename this 'webcam'. To detect
objects within a specific area, we will use OpenCV's Canny Edge Detection, a popular edge
detection algorithm, together with the 'findContours()' function. Copy and paste the following script
in your ScriptTOP, we will use this to draw a bounding box around the detected objects:

import cv2

import numpy as np

def onCook(scriptOp):

image = op('webcam').numpyArray(delayed=True)

gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

gray_8bit = cv2.convertScaleAbs(gray)

edges = cv2.Canny(gray_8bit, 1, 5)

contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

dst = np.copy(image)

object_count =1

https://www.youtube.com/watch?v=1Uw2PWTR_XM&t=529s

for cnt in contours:

X, ¥, W, h = cv2.boundingRect(cnt)

cv2.drawContours(dst, [cnt], -1, (255, 255, 255), 1)
cv2.rectangle(dst, (x, y), (x + w, y + h), (255, 0, 0), 1)

scriptOp.copyNumpyArray(dst)

return

In Script TOP, you should now get a new image with red boxes around the detected edges of your
objects. Next we'll be retrieving the x and y position of our objects. Add a Table DAT to your project
and let's rename this 'position'. Next we'll add a couple of expressions to print out the x and y
coordinates of our bonding box, copy and paste the new code below:

import cv2

import numpy as np

def onCook(scriptOp):
image = op('null2').numpyArray(delayed=True)

gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

gray_8bit = cv2.convertScaleAbs(gray)

edges = cv2.Canny(gray_8bit, 1, 5)

contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

dst = np.copy(image)
object count =1

Link to Table DAT
tablel = op('position')

tablel.clear()

Add headers to the table
tablel.appendRow(['X", 'Y'])

for cnt in contours:

X, Y, w, h = cv2.boundingRect(cnt)

Print contours position into table

tablel.appendRow([x, y])

cv2.drawContours(dst, [cnt], -1, (255, 255, 255), 1)
cv2.rectangle(dst, (x, y), (x + w, y + h), (255, 0, 0), 1)

scriptOp.copyNumpyArray(dst)

return

You should now numbers for both X and Y, each row represents a bounding box, you can filter rows
out using the Select DAT. Convert the values from DAT using a DatTo CHOP and use these values
to control the position of a circle or generate multiple circle as the base of your interaction.

L O~ R R R

£ 08 |

Position tracking with LiDAR sensor

LiDAR technology can scan large areas by targeting a surface with a laser and measuring the time
for the reflected light to return to the receiver; A Slamtec's RPLidar is a small scanner available for
students to be used within the lab. The sensor requires a bit of prior set up to run, please allow
some time for this process when planning the timeline of your project. Should you be using the
desktop provided in the Multipurpose Booth, this step has already been done for you.

Windows

For Windows 10 and 11, begin by downloading Visual Studio, make sure you download the C++

app dev. Download the following GitHub repo: https://github.com/thepelkus-

https://lab.arts.ac.uk/uploads/images/gallery/2024-09/4GsObz61WGJIjnb1-screenshot-2024-09-24-at-15-06-40.png
https://github.com/thepelkus-too/SlamtecLidarTDCPPCHOP

too/SlamtecLidarTDCPPCHOP. Unzip the folder and double click on the 'rplidar_sdk' folder, if

empty download this repo (https://github.com/thepelkus-

too/rplidar _sdk/tree/531cb0dlef4dbd95ccc3ed0a249787838836339f7) and paste it's content
within your 'rplidar_sdk' folder. Now that your 'SlamtecLidarTDCPPCHOP-master' folder is ready,
right-click on it and open in using VS Code. On the right hand side of the interface, look for
'CPlusPlusCHOPExample.sIn' and double click on it. At this point VS Code will begin building your
C++ solution, press OK if a pop-up window comes up. Check the terminal to find out if your built is
completed. Please follow this tutorial for further instructions:

https://youtu.be/fAvF2niosNA?si=8FYoHdmTat231IBA&t=626 - be aware that in the tutorial
he calls it Visual Studio Code but it's Visual Studio you need!

Mac

Some Mac users will have it easier, but this plugin might not work on your laptop as it's only been
tested out on my personal devices. Download the C++ plugin and read through the instructions to

get started: https://github.com/creativetechnologylab/LiDAR-Sensor.

Should you have any issues feel free to contact me on Teams.
Following steps:

Download our pre-built rendering component:

https://github.com/creativetechnologylab/LiDAR-Sensor/blob/main/LiDAR_Sensor.tox and

drag it into a new Touchdesigner file. Once you're done with the set up, contact me via Teams to
come test everything out with our sensor.

00:00:00:24

https://github.com/thepelkus-too/SlamtecLidarTDCPPCHOP
https://github.com/thepelkus-too/rplidar_sdk/tree/531cb0d1ef4bd95ccc3ed0a249787838836339f7
https://github.com/thepelkus-too/rplidar_sdk/tree/531cb0d1ef4bd95ccc3ed0a249787838836339f7
https://youtu.be/fAvF2niosNA?si=8FYoHdmTat231lBA&t=626
https://github.com/creativetechnologylab/LiDAR-Sensor
https://github.com/creativetechnologylab/LiDAR-Sensor/blob/main/LiDAR_Sensor.tox
https://lab.arts.ac.uk/uploads/images/gallery/2024-09/YlmhsISrut3QS1FU-screenshot-2024-08-19-123516.jpeg

Using a Transform TOP, filter out any walls or areas you are not interested in monitoring. You can
now use the same OpenCV code provided above to analyse your area and retrieve x and y
coordinates for any detected object.

Revision #8
Created 30 April 2024 13:22:03 by Marta llacqua
Updated 24 September 2024 14:07:28 by Marta llacqua

