Python for
Beginners

e Introduction to Python

e Python and Art

e Setting Up Your Environment

o Installing Python

o Installing Mamba

o Installing PyCharm

¢ Introduction to the PyCharm IDE

e Hello World
e Variables

e Basic Input and Output

e Control Flow and Conditional Statements

e Collections

o Working with Files

e Bonus: Introduction to Object Oriented Programming

e Bonus: Using the Debugger

e Bonus: Using Git from PyCharm

o Best Practices and Further Learning

Introduction to Python

Welcome to the world of programming with Python! In this chapter, we will embark on a journey to
explore the fundamentals of Python, one of the most versatile and popular programming languages
in the world. Whether you're a complete beginner or have some programming experience, this
course is designed to give you a strong foundation in Python and help you become a confident
programmer.

What is Python?

Python is a high-level, interpreted programming language known for its readability, simplicity, and
extensive standard library. Created by Guido van Rossum and first released in 1991, Python was
designed to emphasize code readability and ease of use, making it an excellent choice for both
beginners and experienced developers.

Why Python?

Python's popularity has surged over the years due to its wide range of applications. It's used in web
development, data analysis, artificial intelligence, automation, and more. The language's clear
syntax and strong community support make it an ideal starting point for beginner programmers.

Course Goals and Structure

The primary goal of this course is to equip you with the essential skills to write Python code and
take advantage of the features provided by an Intergrated Development Environment (IDE). By the
end of this course, you will be able to create your own programs and understand the core concepts
of programming. Each chapter will build upon the previous one, gradually introducing new concepts
and techniques.

Prerequisites

No prior programming experience is required to take this course. All you need is enthusiasm and a
willingness to learn. If you have some experience with programming, you'll find that Python's
syntax and concepts are relatively straightforward to grasp.

Getting Started

To get started, we'll need to set up your programming environment. We'll cover how to install
Python on different operating systems and introduce you to the PyCharm Integrated Development
Environment (IDE), which will make your coding experience smoother and more efficient.

Whether your goal is to use Python in your projects, enhance your analytical skills, or simply have
fun with coding, learning Python is a valuable and rewarding endeavor. So, let's dive in and begin
our exciting journey into the world of Python programming!

Python and Art

Setting Up Your Environment

Setting Up Your Environment

Installing Python

Mac

Windows

Setting Up Your Environment
Installing Mamba

As you work on more complex Python projects, you'll start using something called libraries to add
extra features to your programs. Think of libraries as ready-made sets of code created and
maintained by other developers. They're like toolkits that solve specific problems or add new
features to Python. Instead of reinventing the wheel, it's much smarter to use these libraries when
they fit your needs. The range and number of Python libaries is considered to be one of the best
selling-points of the language. However, you may find that sometimes you'll have different projects
that need different versions of the same library. This is where virtual environments come in handy.
They let you set up separate "sandboxed" Python configurations that don't mess with each other.

In this tutorial, we're going to use a piece of software called Mamba to create and manage virutal
environments. Mamba is a package manager and environment manager for Python. It is built on
the Conda package management system, and its primary goal is to provide quicker and more
efficient operations for managing packages and creating isolated environments.

Mac

Windows

Setting Up Your Environment

Installing PyCharm
What is an IDE and Why Use One?

A programming Integrated Development Environment (IDE) is a software application that provides
a comprehensive set of tools and features to assist you in your programming. It serves as a central
platform for programmers to write, edit, test, debug, and manage their code more efficiently and
effectively. An IDE typically combines various components, such as a code editor, debugger,
compiler, and other development tools, into a single cohesive environment.

Here are some key features and components commonly found in programming IDEs:

1. Code Editor: The core component of an IDE, the code editor offers features like syntax
highlighting, code auto-completion, indentation, and formatting to enhance code
readability and writing speed.

2. Debugger: IDEs often include a debugger that helps programmers identify and rectify
errors in their code by allowing step-by-step execution, variable inspection, and setting
breakpoints to pause the program's execution for analysis.

3. Compiler/Interpreter Integration: An IDE can be configured to work with specific
compilers or interpreters for various programming languages, enabling code compilation
and execution directly from the IDE.

4. Version Control Integration: You'll soon find that version control software will become
an indispensable part of managing your code. Many IDEs integrate with version control
systems like Git, making it easier to manage code changes, collaborate with team
members, and track project history.

5. Error Highlighting: Instant feedback on code errors, warnings, and potential issues is a
common feature of IDEs. This helps catch mistakes as you write code.

6. Plug-ins and Extensions: Many IDEs support plug-ins or extensions that allow users to
customise the IDE's functionality, adding features and support for additional languages or
frameworks.

IDEs play a crucial role in modern software development by providing a cohesive environment that
streamlines the coding process, encourages best practices, and enhances productivity.

PyCharm is a popular free IDE for Python development that has all of the features listed above.
Follow the steps below in order to get it up and running on your system.

Mac

Windows

Introduction to the PyCharm IDE

Creating Your First Project in PyCharm

When you first use PyCharm, you'll be welcomed by its startup screen.

Welcome to PyCharm

PyCharm

Projects

Welcome to PyCharm

Customize
Plugins

Learn

New Project Open Get from VCS

Take a quick onboarding tour

Start Tour

To create a blank Python project, click on "New project."

Welcome to PyCharm

Mew Project COpen Get from VCS

PyCharm will now prompt you to configure the Python project:

New Project

Location: | fhome/dolica/PycharmProjects/first-pycharmiproject

~ Python Interpreter: New Conda environment
® New environment using Conda
Location: /home/dolica/mambaforge/en st-pycharm-project
Python version: 3.11
Conda executable: | /home/dolica/mambaforge/bin/mamba

Make available to all projects

Previously configured interpreter

¥ Create a main.py welcome script

Create Cancel

In this example, the project files will reside in my /home/dolica/PyCharmProjects/first-pycharm-project
directory. However, you can choose a location that suits your needs.

For the virtual environment, select Conda. PyCharm automatically makes the virtual environment's
name match the project name, and this is something we wish to keep as it makes things less
confusing. The setup page also asks if you want to create a main.py welcome script; for this
project, you should keep this option checked. This will have PyCharm create a basic Python file for
you instead of just preparing a blank directory.

Once the setup is complete, click "Create."

The PyCharm Interface

After creating your project, you'll land in the main PyCharm interface.

. first-pycharm-project ~ Version control ~ e main v

Project - ® main.py

~ [first-pycharm-proy. -t

& main.p)

Here's a quick overview:

e Project Tool Window: This displays the files comprising your Python project. Right now,
there's only one file, main.py , but more complex projects will have multiple files and
folders.

e Menu: Clicking here opens the PyCharm menu.

e Editor: This is where you write code. The tab bar at the top lets you switch between
different files, though currently, we have only one, main.py .

e Environment: This shows the environment used to run your Python files for this project,
matching the Mamba settings you selected when creating the project.

e Breakpoint: Breakpoints are handy for pausing program execution, especially when
debugging code to find issues.

e Run & Debug: The run button (play symbol) runs your code and displays the output in
the console. The debug button (bug symbol) runs the program in debugging mode,
pausing at breakpoints.

Hi, PyCharm

Now you should see the PyCharm editor with our main.py file open. You'll notice a print_hi
command created by PyCharm. You'll learn more about how these commands work and how to
create your own later. For now, let's run this file:

¢ main -~ D

Run 'main’ 5

This opens the "Run" panel at the bottom of the window, displaying the output:

main

v @

@

&

T Q@

The text "Process finished with exit code 0" indicates that the program ran without errors. Our
main.py code is designed to display "Hi, PyCharm," and it has executed correctly.

Hello World

Creating a "Hello, World" Program in PyCharm

Now that we have Python, Mamba, and PyCharm set up, let's create a simple "Hello, World"
program. To do this, we will create a new Python file using the following steps:

1. Right-click on your first-pycharm-project folder.
2. Go to "New" and select "Python File."

. first-pycharm-project ~ Version control ~ Current File ~
Project @ main.py

v [first-py

th/Refaranca, [E3 Python Package

e Python File
HTML File

@
€

T O P @

You'll now be prompted to choose a file name and select the "type" of Python file you want
PyCharm to create. For this example, let's name the file hello.py and choose the file type as
"Python file." While this might seem redundant, you'll see that there's a reason PyCharm offers the
other file types.

New Python file

e hE“llD.p}'i I

e Python file
¢ Python unit test
¢ Python stub

Press Enter, and a new Python file named hello.py will be created. You can verify its creation by
checking the files listed in the project tool window. The empty hello.py file will also open in the
editor.

= . first-pycharm-project ~ Version control ~ Current File ~

Project e main.py e hello.py

~ [J first-pycharm-project
e hello.py
¢ main.py
[lh External Libraries
=" Scratches and Consoles

@
>
S

T OO0

ust like before, you can run the newly created Python file. However, since there's no code in it yet,
you won't see any meaningful output. It will simply indicate that the program finished with exit
code 0, as we'd expect no errors to occurr seeing as we haven't even writen any code yet.

= . first-pycharm-project ~ Version control v Current File ~
Project ~ e main.py e hello.py

~ [first-pycharm-project
e hello.py
& main.py

=
=

=

To create a "Hello, World" program, we'll use a print() statement. In Python, print() is a command
that sends output to the console. Inside the brackets of print() , we provide the text we want Python
to print. This text must be enclosed in quotation marks so that Python knows where it begins and
ends. Here's what the code looks like:

print("Hello World")

If you type out the above code letter-by-letter, you'll notice that PyCharm's auto-complete feature
can assist you. As you start typing "pri," PyCharm will suggest commands that contain that text.
When "print" is selected you can then press Enter and PyCharm will automatically add the
remaining characters, including the parentheses, and place your cursor between the brackets,
where you can type what it is you want to print.

In this example, | waited until | had typed out "prin" before employing auto-complete's help, but |
could have done it sooner. As you type out more, you narrow down PyCharm's list of potential ways
for completing your code.

e main.py ¢ hello.py

Now let's see what happens when | use auto-complete after just typing the letter "p."

e hello.py

Now I've saved myself a fair few keystrokes as PyCharm rightly guesses that I'm typing out "p"
because | wish to use the print command.

Additionally, for writing the text, PyCharm will automatically create a closing quotation marks when
you type an opening one, saving you time. This is also a feature frequently found in IDEs.

With the print("Hello World") code in place, you can run the program again. This time, you'll see
meaningful output.

https://lab.arts.ac.uk/uploads/images/gallery/2023-08/IVmnqT7G1h9w1kdq-faster-auto-complete.gif

= . first-pycharm-project ~ Version control ~ Current File ~

Project e main.py e hello.py

~ [first-pycharm-project 1

hello

@
>
S

Now you have successfully created and run your "Hello World" program in PyCharm. This is a
simple yet essential step in getting started with Python programming. Now let's look at variables.

https://lab.arts.ac.uk/uploads/images/gallery/2023-08/t5oLlOeCizu0F4R4-hello-world-output.png

Variables

Introduction to Variables

To start, let's create a new Python file called "variables." This can be done by going to the project
tool window on the left-hand side and right-clicking on your "first-pycharm-project” folder. From
here you can then select New > Python file. Just like before, you'll need to specify the desired
filename in the window that appears. In this case, I've gone with the name variables.py.

With our newly created variables.py file we can now delve into the concept of variables.

Why Use Variables?

Python can be used as a calculator as it allows us to perform calculators with whole-numbers. In
programming, we refer to these whole-number values as integers or ints.

Consider a basic task: adding two whole numbers using Python. You can achieve this by entering
the following code into your "variables.py" file and running it:

print(1 + 1)

As expected, Python tells us that 1 + 1 gives a result of 2.

. first-pycharm-project ~ Version control ~ Current File ~

Project - ¥ main.py ¢ hello.py e variables.py

1)

variables

However, you may want to use a certain value more than once. It is often useful to store data in
our code for repeated use. This is where the concept of variables comes into play.

What Are Variables?

In the world of programming, variables are like containers that hold information. Imagine them as
labeled boxes where you can store different types of data. This data could be numbers, words,
sentences, or something else your program needs to work with.

https://lab.arts.ac.uk/uploads/images/gallery/2023-08/79f2KQyOSsaZUEl2-one-plus-one-print.png

Variables allow you to give a name to a piece of data, making your code more readable and
organised.

Variable Assignment

We use the assignment operator = to put data inta a variable. Now we can find a sum of two
integers like we did before, except this time we are able to store the result so that it can be
accessed again later.

my sum=1+1

We have now created a box with the label my_sum that contains an integer of the value 2. Now we
can display this by giving our my sum variable to the print() command.

When combined, these two lines of code appear as follows:
Current F

¢ variables.py

https://lab.arts.ac.uk/uploads/images/gallery/2023-08/RgkssQLT88g7Q0Lk-image-1692714764115.png
https://lab.arts.ac.uk/uploads/images/gallery/2023-08/fRKBdowrbEeOwUi4-sum-with-variable.png

Naming Variables

Python enforces specific rules for naming variables. Variable names must begin with a letter or an
underscore (_) and can be followed by letters, numbers, or underscores. However, they cannot
begin with a number or contain spaces or special characters.

Self-Documenting Code

It's also a good idea to make sure your variable names are clear and meanginful. For example,
recipe_name Or ingredient_count are good variable names, as they help us understand what a
variable is for and what a bit of code is doing.

Let's take the example of code used for finding the area for a rectangle:

a=x*y

print(a)

rectangle_area = width * length

print(rectangle_area)

Both code snippets accomplish the same task, but the second one requires less mental effort to
understand its purpose. This is an important consideration when writing code and selecting
variable names.

When you choose names in your code that make it more "self-explanatory,"” this is often referred to
as self-documenting code. This is a very good habit to pick up.

Reserved Words

Avoid using variable names that coincide with reserved words in Python. Python reserves certain
keywords such as while, for, if, else, import, exit, and others for its built-in functions and tools.
By using these keywords for variables, we are in a sense "confusing" Python, as it no longer knows
where to find the built-in tools that it associates with those names. This is almost guaranteed to
make your program misbehave.

For example, let's talk about the word print in Python. In Python, we use the print command to
show information from our code on the screen. Now, imagine what happens when we first use print
as a name for a variable in our program, but then also try to use print as a command once more
later:

¢ main.py e hello.py e variables.py

my_sum = +

(my_sum)

print =
~int(

You'll see that print on line 4 now has a squiggly line beneath it. Moving the cursor over the print
on line 4 gives us the following message:

e main.py e hello.py e variables.py

my_sum = +

(my_sum)
®

4 pl‘iht =

Shadows built-in name 'print’

print:

This message is telling us that the built-in print command is being "shadowed" by something else.
Now let's look at the print(my sum) from line 5:

https://lab.arts.ac.uk/uploads/images/gallery/2023-09/LBz0pOB1FiHqEei3-image-1695044834064.png
https://lab.arts.ac.uk/uploads/images/gallery/2023-09/NMsKwnkE7UYeQgnP-image-1695044951960.png

e main.py e hello.py e variables.py

my_sum = 1 +
(my_sum)

p®int =

'int' object is not callable

) variahles

print:

Like before, moving the mouse over this bit of code gives us another message. This time we're
being told that certain things are "callable" in Python, but that integers do not have this property
of being callable. In essense, we are misuing the integer by attempting to do something with it that
cannot be done. While the exact meaning of these messages may not be clear to you now,
understand that these are some of the first signs that alert you to potential problems within a piece
of code.

One of the useful features of IDEs their ability to detect and highlight potential issues in your code
before you've even run it. This helps you avoid the inconvinience of executing your code, only to
have it crash before completing its intended task.

We can also see that the IDE has suggested some solutions. Where we assign 1234 to a variable
called print, it suggests using a comment built into PyCharm that will help rename this element to
something other than print . It also advises us to delete the call on line 5. While renaming the
variable on line 4 is the correct action, we'll keep things this way for now in order to better
understand how errors manifest in Python.

Now when we run our code we get the following output:

/home/dolica/mambaforge/envs/first-pycharm-project/bin/python /home/dolica/PycharmProjects/first-pycharm-
project/variables.py
2
Traceback (most recent call last):
File "/home/dolica/PycharmProjects/first-pycharm-project/variables.py", line 5, in <module>
print(my_sum)

TypeError: 'int' object is not callable

Process finished with exit code 1

https://lab.arts.ac.uk/uploads/images/gallery/2023-09/wDlSFCqkID8LawQN-image-1695045044359.png

On the first line of our output, we have two paths. The first is the path to a particular version of
Python that is being used specifically for our first-pycharm-project. The second path is the file that
was run with this version of Python: the variables.py file that we have just created.

After this, we see the number 2. This is the output created by the second line in our code. Python
was able to get to this point in the code without any problems, so we know the issue isn't coming
from therem.

However, further down we get an error. The output tells us that on line 5 we attempted to treat an
int as a Callable when it is not one. It even shows us that the command on that line we used was
print(my_sum) . This is what we were warned about earlier in the mouse-over message.

Remember: When you deal with errors the first thing you should do is identify the file and line that
it is coming from.

We can fix this by using a different variable name for our other number. Here, | have changed the
name of the variable on line 4 to not reserved name .

e main.py e hello.py e variables.py

my_sum = +

(my_sum)

not reserved name =

(my_sum)

Now the squiggly lines have disappeared. Another indication that the issue has been fixed is that
the second print command now has the same highlighting as the first one. Now let's examine the
mouse-ver messages again.

https://lab.arts.ac.uk/uploads/images/gallery/2023-09/ChAW7LdF5Nxwp473-image-1695048438570.png

¢ main.py e hello.py ¢ variables.py

my_sum = +

1t (my_sum)

not_reserved_name =

1t (my_sum)

The first mouse-over message simply tells us we have a variable of the type int with a value of
1234. This is not a warning - it's simply telling us that a variable has been created on this line.

The mouse-over message shows us some information about how to use the print command. This is
another handy feature of IDEs: showing us a bit about how commands work without having to go to
its declaration or the documentation. Chances are you won't use any of the "advanced" features of
print and will simply stick to using it with basic data.

Now you should understand why reserved words should not be used for naming variables.

Reusing Variables

Variables can hold different values over time. If you later find out you need 12 ingredients for the
cake, you can simply change the value:

ingredient_count = 12

https://lab.arts.ac.uk/uploads/images/gallery/2023-09/oP3BaRKcGAOpvxyB-reserved-word-fix.gif

No need to create a new variable; the old one updates with the new value.

Dynamic Nature of Variables

Unlike some other programming languages, Python is dynamically typed. This means you don't
have to specify the type of data a variable will hold. Python figures it out on its own.

Basic Input and Output

Control Flow and Conditional Statements

Collections

Working with Files

Bonus: Introduction to Object Oriented
Programming

Bonus: Using the Debugger

Bonus: Using Git from PyCharm

Best Practices and Further Learning

