
How to make the Raspberry Pi display a web page fullscreen at power on

How to power the Raspberry Pi Pico

How to make two Raspberry Pi Pico communicate via Wifi

How to control Raspberry Pi Pico via Wifi

How to set the sound output in Raspberry Pi

How to install Node.js on Raspberry Pi

How to use Waveshare E-Paper Display with Raspberry Pi

How to Display Animation on Waveshare E-Paper Display

How to send files to Raspberry Pi using SSH

How to use Raspberry Pi Camera Module 3

How to do Basic Commands in Terminal

Tutorials

This short tutorial should be enough for you to be able to setup a Raspberry Pi with GUI mode and
auto login enabled to disable a web page full screen automatically when it turns on.

1. Copy full-screen.sh into the home folder of the pi user, and run the following command:
/home/pi/full-screen.sh

sudo chmod +x full-screen.sh

2. Create a folder called autorun inside the .config folder of the home folder of the pi user:
/home/pi/.config/autorun/kiosk.desktop

cd /home/pi/.config mkdir autorun

3. Reboot the Raspberry Pi.

sudo reboot now

How to make the Raspberry Pi display a web
page fullscreen at power on

full-screen.sh
export DISPLAY=:0.0
xset s off
xset -dpms
xset s noblank
chromium-browser --noerrdialogs --kiosk https://google.co.uk --incognito

kiosk.desktop
[Desktop Entry]
Type=Application
Exec=/home/pi/full-screen.sh
Hidden=false
X-GNOME-Autostart-enabled=true
Name=kiosk

The easiest way to power a Pico is through the USB cable either to a computer or a phone charger.
If you are going for a wireless design, you can use batteries as well. This tutorial will demonstrate
how to power a Pico with a 9V battery or 3 AA batteries.

You have to find out the pinout of the model you are using. The pins you are looking for are VSYS
and GND . In this tutorial, a Pico W is used.

VSYS (PIN 39): Pin for main system input voltage. The input voltage can vary between 1.8V to
5.5V. This voltage is used by the onboard SMPS to generate 3.3V to power the RP2040
microcontroller and GPIOs.

How to power the Raspberry Pi Pico
Powering the Raspberry Pi Pico

Raspberry Pi Pico pinout

Raspberry Pi Pico's Power Need

Why these parts are needed

https://lab.arts.ac.uk/uploads/images/gallery/2024-02/tgMjWHhwpk4t816d-image-1708527617079.png

Switch: When we are using batteries to power the microcontroller, a switch is preferred.
Some battery holder has a built-in switch which will be more convenient for you. With a
switch, you can turn off the Pico when not in use and not drain the battery.
LM7805: The LM7805 is a popular voltage regulator integrated circuit (IC). It is a positive
voltage regulator that provides a stable and fixed output voltage of +5 volts. It is widely
used in electronic circuits to regulate the voltage and ensure a consistent and reliable
power supply. It can accept an input voltage in the range of 7V to 35V, depending on the
specific model, so you will need this when you are using a power supply with a voltage
higher than 5V.
Diode: - A diode is a semiconductor device that allows current to flow in one direction
while blocking it in the opposite direction. In other words, it acts as a one-way valve for
electric current. We need a diode for safety to prevent one power source from back-
feeding the other. Raspberry Pi can have two power sources at the same time and there is
a risk of unwanted power flow between the two power sources. Schottky diode is
preferred for its low voltage drop, but any others should work with a bit of voltage drop
around 0.2-0.6V.

Part needed: switch, LM7805 & Any diode

9V battery

3 AA batteries

https://lab.arts.ac.uk/uploads/images/gallery/2024-02/ileXoE2xb0r5ejqe-pi-9v.png

Part needed: switch & Any diode

https://lab.arts.ac.uk/uploads/images/gallery/2024-02/9WWHlOztEERfMaAu-3aapico.png

Before heading to communication between two pico, you can try controlling pico via wifi with your
computer first, see tutorial here.

How to make two Raspberry Pi Pico communicate
via Wifi
Wifi Communication

Server Code

Client Code

https://lab.arts.ac.uk/books/raspberry-pi/page/how-to-control-raspberry-pi-pico-via-wifi

WiFi, short for Wireless Fidelity, is a technology that enables devices like smartphones, laptops,
and other electronic gadgets to connect to the internet or communicate with each other without
the need for physical cables. It operates by using radio frequency signals to transmit data between
devices and a wireless router. The router, connected to the internet via a wired connection, acts as
a central hub that facilitates communication between devices within its range. WiFi has become a
ubiquitous and convenient way for people to access the internet and share information wirelessly,
contributing to the proliferation of wireless connectivity in homes, businesses, and public spaces.

You can create a local wifi network with just powering up a wifi router. When two or more devices
(computers, microcontrollers...) are connected to the same wifi network, they can communicate
with each other, without accessing the internet. Not all microcontrollers come with a built-in Wifi
module so we will be using Pico W (with a built-in wifi module) in this tutorial. But there are plenty
of add-ons options you can add to your microcontroller for wifi.

External read for fun:)

How to control Raspberry Pi Pico via Wifi
What is Wifi

https://en.wikipedia.org/wiki/IP_over_Avian_Carriers
https://lab.arts.ac.uk/uploads/images/gallery/2024-02/fwp7nCzHQCvg4StS-image-1708692329819.png

An IP address, or Internet Protocol address, is a unique numerical label assigned to each device
connected to a computer network that uses the Internet Protocol for communication. It consists of
a series of numbers separated by periods, like xxx.xxx.xxx.xxx. Think of it as a digital address for
your device on the internet. It allows devices to identify and communicate with each other on a
network, much like a home address allows mail to be delivered to a specific location. IP addresses
can be dynamic, meaning they change periodically, or static, where they remain constant. They
play a crucial role in routing data packets across the internet, ensuring that information reaches
the correct destination.

1. Google Search - "What's my IP address?"
2. Go to Network Preferences (MAC), Wifi Properties (Windows)
3. Go to Terminal (MAC) or Command Prompt (Windows) and type in ipconfig getifaddr en1

The example code will turn on/off the onboard LED on Pico via wifi without an external circuit. See
this tutorial to learn how to set up your Pico. Before you go ahead, there are some things that
you need to change for your wifi.

1. Change ssid , password in the code
2. Run your code in Thonny
3. Find your IP address in the Thonny Shell, something like ip = 10.3.15.120
4. open up a web browser
5. go to http:// **IP address**/light/on to turn the LED on
6. go to http:// **IP address**/light/off to turn the LED off

What is IP address

How to find my IP address

Get started

import network
import socket
import time

from machine import Pin

led = Pin("LED", Pin.OUT)

ssid = 'YOUR NETWORK NAME'
password = 'YOUR NETWORK PASSWORD'

wlan = network.WLAN(network.STA_IF)
wlan.active(True)

https://lab.arts.ac.uk/books/raspberry-pi/page/what-is-a-raspberry-pi-pico

wlan.connect(ssid, password)

html = """<!DOCTYPE html>
<html>
 <head> <title>Pico W</title> </head>
 <body> <h1>Pico W</h1>
 <p>%s</p>
 </body>
</html>
"""

max_wait = 10
while max_wait > 0:
 if wlan.status() < 0 or wlan.status() >= 3:
 break
 max_wait -= 1
 print('waiting for connection...')
 time.sleep(1)

if wlan.status() != 3:
 raise RuntimeError('network connection failed')
else:
 print('connected')
 status = wlan.ifconfig()
 print('ip = ' + status[0]) //print your address

addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]

s = socket.socket()
s.bind(addr)
s.listen(1)

print('listening on', addr)

Listen for connections
while True:
 try:
 cl, addr = s.accept()
 print('client connected from', addr)
 request = cl.recv(1024)

 print(request)

 request = str(request)
 led_on = request.find('/light/on')
 led_off = request.find('/light/off')
 print('led on = ' + str(led_on))
 print('led off = ' + str(led_off))

 if led_on == 6:
 print("led on")
 led.value(1)
 stateis = "LED is ON"

 if led_off == 6:
 print("led off")
 led.value(0)
 stateis = "LED is OFF"

 response = html % stateis

 cl.send('HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n')
 cl.send(response)
 cl.close()

 except OSError as e:
 cl.close()
 print('connection closed')

Most Raspberry Pis have a 3.5mm audio jack for outputting audio, but you can also output audio
via HDMI as well. The below will show you two different ways to set the output device.

1. Click the Raspberry menu (top-left corner)
2. Go to Preferences → Audio Device Settings
3. In the Output Device dropdown, choose: HDMI or HDMI 1 (depending on your Pi model)
4. Click Select Controls if needed to unmute or adjust volume
5. Click Close

You may not see the exact thing on your pi based on the operating system you used.

For example, setting HDMI as default audio output:

The 2 at the end indicates HDMI.

0 = Auto
1 = Analog (3.5mm jack)
2 = HDMI

1. sudo raspi-config
2. Navigate to: 1. System Options → S2 Audio
3. Choose: 1 HDMI (or HDMI 1 if you see multiple)
4. Press Enter, then Finish

1. You can test it with: speaker-test -t sine -f 440 -c 2
2. Or play a WAV sound file: aplay /home/pi/Music/youOwnSoundFile.wav
3. Or play a MP3 sound file: cvlc /home/pi/Music/youOwnSoundFile.mp3

How to set the sound output in Raspberry Pi

Audio Setting

Method 1: Use Raspberry Pi Configuration (GUI)

Method 2: Terminal Command

amixer cset numid=3 2

Method 3: Use raspi-config

Test the Audio

Installing Node.js on Raspberry Pi is very simple for those with basic command line experience.

In the terminal or via SSH:

1. Add the package source: curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -
2. Install Node using: sudo apt-get install -y nodejs
3. Confirm package is installed: node -v

You may also wish to install the development tools to build native addons: sudo apt-get install gcc
g++ make

And you may wish to install Yarn package manager to replace NPM:

How to install Node.js on Raspberry Pi

Extra steps

curl -sL https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update && sudo apt-get install yarn

A Waveshare E-Paper Display is an electronic ink (e-ink) screen designed for low-power, high-
visibility applications. These displays mimic the appearance of traditional ink on paper, making
them ideal for projects requiring clear readability without constant power consumption. In short, it's
the Kindle's screen.

In this tutorial, we will be using the Waveshare model epd7in5V2, a Raspberry Pi 3 and Python
as the programming language. The display is also compatible with Arduino, C and Jetson Nano. For
more information or tutorials, please visit the official guide.

How to use Waveshare E-Paper Display with
Raspberry Pi
What is a Waveshare E-Paper Display?

Connection
Disconnection from Power
Disconnect the power supply to the Raspberry Pi before you proceed with any connection.

https://www.waveshare.com/wiki/7.5inch_HD_e-Paper_HAT#Run_Python_Library

The display comes with an e-paper Driver HAT, so simply plug in.

You may need to insert the ribbon cable (the golden one) from the display to the HAT.

1. Gently pull up the black clip (green arrow)
2. Insert the golden cable (red arrow, pay attention to the direction)
3. Press down the black clip to secure it.

https://lab.arts.ac.uk/uploads/images/gallery/2025-04/isO0leUtVDVoliCz-7-5inch-e-paperb800-480-1.jpg

1. Input this command sudo raspi-config in the Terminal.
2. Navigate to Interface Options → SPI → Enable
3. Reboot the pi by sudo reboot

Setting Up the Pi
Enable SPI in pi

Install Python Library
sudo apt-get update
sudo apt-get install python3-pip
sudo apt-get install python3-pil
sudo apt-get install python3-numpy
sudo pip3 install RPi.GPIO
sudo pip3 install spidev

Download Python Example code from Github

https://lab.arts.ac.uk/uploads/images/gallery/2025-04/plqzFcZGklfgExTG-epaperconnection.JPG

You can either run the code from the Terminal or use a Python-based software such as Visual
Studio or Thonny. In Terminal:

The display should now be blinking and have some demos displayed.

The below code is to draw a rectangle with random size and location on the display.

git clone https://github.com/waveshare/e-Paper.git

Go to the Directory (folder) where the example codes are
located

git clone https://github.com/waveshare/e-Paper.git

Run the Python Code

python3 epd_7in5_V2_test.py

Something more

#!/usr/bin/python
-*- coding:utf-8 -*-
import sys
import os
libdir = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'lib')
if os.path.exists(libdir):
 sys.path.append(libdir)

import logging
import random
from waveshare_epd import epd7in5_V2
import time
from PIL import Image,ImageDraw,ImageFont
import traceback

logging.basicConfig(level=logging.DEBUG)

try:
 logging.info("epd7in5_V2 Demo")
 epd = epd7in5_V2.EPD()

 logging.info("init and Clear")
 epd.init_fast()
 epd.Clear()

 #print(f"Display Width: {epd.width}, Display height: {epd.height}")
 # Display Width: 800, Display height: 480
 # Create a blank image
 Himage = Image.new('1', (epd.width, epd.height), 255) #255: white, clear the frame
 draw = ImageDraw.Draw(Himage)

#Drawing function Argyments:
draw.rectangle((x1, y1, x2, y2), outline=0, fill=None)
draw.arc((x1, y1, x2, y2),startAngle, endAngle, fill=0), (x1, y1, x2, y2) bounding box of the ellipse that the arc
is part of
draw.chord((x1, y1, x2, y2), startAngle, endAngle, outline=0, fill=None), different to arc as it will close the
shape and allow fill colour
draw.line((x1, y1, x2, y2), fill=0, width=1)

 while True:
 #Generate a random pattern
 draw.rectangle((random.randint(10,epd.width-10), random.randint(10,epd.height-10),
random.randint(10,epd.width-10), random.randint(10,epd.height-10)), outline=0)

 #Display the generated image
 epd.display(epd.getbuffer(Himage))

 #Hold the frame for 2 seconds
 time.sleep(2)

logging.info("Goto Sleep...")
epd.sleep()

except IOError as e:
 logging.info(e)

except KeyboardInterrupt:
 logging.info("ctrl + c:")
 epd7in5_V2.epdconfig.module_exit(cleanup=True)
 exit()

Please follow the previous tutorial for setting up the basic. This tutorial assumes you already have
an animation ready to use.

1. Black and White, as the display we have in stock is Black and White only
2. Low framerate animation, such as hand-drawn animation, as the display is not

refreshing very fast.
3. Short animation, depends on the Pi you use, Pi 3 may not be powerful enough to drive

and store long animation.

1. Resize the resolution to fit the display - 800x480 pixels
2. Lower the framerate to 10 or 12 fps
3. Export the video to jpg sequences from Premier and save them in a folder called

‘animation’
4. Rename all jpg to 1.jpg to #.jpg using Terminal, if they are not already

cd /path/to/your/folder

a=1
for file in Sequence*.jpg; do
 mv "$file" "$a.jpg"
 ((a++))
done

5. Now you can transfer the folder to the Raspberry Pi, you can use a USB stick or via SSH.
Place the folder animation inside the folder e-Paper .

We will need to convert jpg to bmp in Pi using ffmpeg.

How to Display Animation on Waveshare E-Paper
Display
How to use Waveshare E-Paper Display?

What type of animation will be suitable to display
on E-Paper

File Preparation - Adobe Premiere Pro

File Preparation - Raspberry Pi

https://lab.arts.ac.uk/books/raspberry-pi/page/how-to-use-waveshare-e-paper-display-with-raspberry-pi

1. Install ffmpeg, sudo apt install ffmpeg -y
2. Make sure you are at the /animation directory
3. Start conversion, for f in *.jpg; do ffmpeg -i "$f" "${f%.jpg}.bmp"; done
4. Remove old jpg files, rm *.jpg
5. Now all images in the animation folder should look like 1.bmp to #.bmp

The below code will display the animation from frame 1 to the end frame.

Code

!/usr/bin/python
-*- coding:utf-8 -*-
Display Width: 800, Display height: 480

import sys
import os
libdir = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'lib')
if os.path.exists(libdir):
 sys.path.append(libdir)

import logging
import random
from waveshare_epd import epd7in5_V2
import time
from PIL import Image,ImageDraw,ImageFont
import traceback

logging.basicConfig(level=logging.DEBUG)

try:
 logging.info("epd7in5_V2 Animation")
 epd = epd7in5_V2.EPD()

 logging.info("init and Clear")
 epd.init_fast()
 epd.Clear()

 animation_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'animation')
 image_files = sorted(
 [f for f in os.listdir(animation_dir) if f.endswith('.bmp')],
 key=lambda x: int(os.path.splitext(x)[0]))

 if not image_files:
 logging.info(e)
 epd.sleep()
 exit()

 logging.info("switch to partial refresh")
 epd.init_part()

 while True:
 for image_file in image_files:
 image_path = os.path.join(animation_dir, image_file)
 logging.info(f"Displaying: {image_file}")
 Himage = Image.open(image_path).convert('1')
 epd.display_Partial(epd.getbuffer(Himage), 0, 0, epd.width, epd.height)
time.sleep(0.1)

except IOError as e:
 logging.info(e)

except KeyboardInterrupt:
 logging.info("ctrl + c:")
 epd7in5_V2.epdconfig.module_exit(cleanup=True)
 exit()

SSH stands for Secure Shell — it’s a network protocol that lets you securely log in to and control
another computer remotely, usually over the internet or your local network.

Think of it as opening a remote terminal window on your Raspberry Pi from your laptop or another
device.

1. Run terminal commands on your Pi from another machine
2. Transfer files (using scp, rsync, or SFTP)
3. Install software, run Python scripts, update your system
4. Control a headless Raspberry Pi (one without monitor/keyboard)

Option 1: Using Raspberry Pi OS with Desktop

Go to Preferences → Raspberry Pi Configuration
Under the Interfaces tab, enable SSH
Reboot afterwards, sudo reboot

Option 2: If You’re Using Pi Headless

Put a file named ssh (with no extension) into the boot partition of the SD card
When the Pi boots, SSH will be enabled

1. In Terminal, hostname -I
2. You will see something that looks like this: 192.168.1.42 , this is your pi's IP address

scp /path/to/local/file pi@<raspberry_pi_ip>:/home/pi/

scp -r /path/to/local/folder pi@<raspberry_pi_ip>:/home/pi/

How to send files to Raspberry Pi using SSH
What is SSH?

What You Can Do with SSH:

Enable SSH on Raspberry Pi

Find Pi's IP address

File Transfer
1. From Your Computer → Raspberry Pi

2. To Send a Whole Folder

3. From Raspberry Pi → Your Computer

scp pi@<raspberry_pi_ip>:/home/pi/somefile.txt /local/path/

1. The default username is usually pi
2. If SSH asks you to confirm the connection the first time, type yes
3. If your Pi is using a custom SSH port (e.g. 2222), add -P 2222

Tips

This tutorial will walk you through setting up and using the Raspberry Pi Camera Module 3 Noir on a
Raspberry Pi 5, but other Pi like Pi 3 and Pi 4 will work as well.

Feature Description

Sensor Sony IMX708

Resolution 12MP (4608 × 2592)

Autofocus ✅ Yes (PDAF or EDOF depending on model)

HDR ✅ Available on certain models

FoV Variants Standard & Wide-angle

IR Version Available (NoIR version)

How to use Raspberry Pi Camera Module 3

What is Raspberry Pi Camera Module 3?

Camera Module 3 — Key Features

https://lab.arts.ac.uk/uploads/images/gallery/2025-04/qcmuzNZkHS0bCqpC-image-1744718156171.png

Feature Description

Interface CSI-2 via 22-pin MIPI ribbon cable

OS Support Raspberry Pi OS Bookworm or later

Raspberry Pi (Pi 3 or later)
Camera Module 3 (ensure it’s a v3 model)
Camera ribbon cable (22-pin), Pi5 will need a 22pin to 15pin ribbon cable
Power supply & HDMI or SSH access

Raspberry Pi OS Bookworm (64-bit recommended)
Camera support via libcamera stack
picamera2 Python library

1. Power off your Pi.
2. Locate the CSI camera port on the board (next to the HDMI ports).
3. Gently lift the connector latch.
4. Insert the ribbon cable on the Pi: the blue tab faces the Ethernet port, metal pins

toward HDMI.
5. Insert the ribbon cable on the camera: blue side usually faces away from the camera

sensor.
6. Close the latch and ensure it’s snug.
7. Power on the Pi.

1. sudo raspi-config
2. Interface Options -> I2C -> Enable
3. sudo reboot

1. Basic Camera Preview (HDMI required): libcamera-hello

Requirements
Hardware

Software

Physical Connection

Enable I2C communication

Update OS & Install Required Packages
sudo apt update && sudo apt upgrade -y
sudo apt install -y libcamera-apps python3-picamera2 python3-opencv

Test Camera via Terminal

2. Take a Photo: libcamera-jpeg -o test.jpg
3. Record a Video (10 seconds): libcamera-vid -t 10000 -o test.h264

This code will pop a new window of live preview with autofocus.

1. Download the Haar Cascade XML and saved it in a folder called haarcascades . wget -P ~
https://github.com/opencv/opencv/raw/master/data/haarcascades/haarcascade_frontalface_default.xml

Testing Code
Python Code Using picamera2

from picamera2 import Picamera2
from libcamera import controls
import time

picam2 = Picamera2()
picam2.start(show_preview=True)

Enable continuous autofocus
picam2.set_controls({"AfMode": controls.AfModeEnum.Continuous})

print("Camera feed started. Press Ctrl+C to stop.")
try:
 while True:
 time.sleep(1)
except KeyboardInterrupt:
 picam2.stop()
 print("Camera stopped.")

Face Detection Example with OpenCV

import cv2
import numpy as np
from picamera2 import Picamera2
from libcamera import controls
import warnings

Suppress the specific warning from OpenCV
warnings.filterwarnings("ignore", category=UserWarning, module="cv2")

Initialize the Picamera2 instance

picam2 = Picamera2()

Start the camera (no preview for better performance during processing)
picam2.start()

Set autofocus to continuous mode
picam2.set_controls({"AfMode": controls.AfModeEnum.Continuous})

Manually specify the path to the Haar Cascade file
face_cascade = cv2.CascadeClassifier('/home/pi/haarcascades/haarcascade_frontalface_default.xml') # Adjust
this path if necessary

Check if the cascade classifier is loaded properly
if face_cascade.empty():
 print("Error loading Haar Cascade classifier. Make sure the path is correct.")
 exit()

Start capturing frames and detecting faces
while True:
 # Capture a frame from the camera
 frame = picam2.capture_array()

 # Check if the frame was captured successfully
 if frame is None:
 print("Failed to capture frame.")
 break

 # Convert the image to grayscale (required for Haar Cascade)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Detect faces in the image
 faces = face_cascade.detectMultiScale(gray, 1.1, 4)

 # Loop through the faces and draw rectangles around them
 for (x, y, w, h) in faces:
 # Draw a thin rectangle (face bounding box) around the detected face
 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

 # Show the frame with the face(s) detected
 # Convert the frame to a simpler BGR format or grayscale

		frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert to RGB
 cv2.imshow("Face Detection", frame)

 # If the 'q' key is pressed, exit the loop
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

Clean up
picam2.stop() # Stop the camera
cv2.destroyAllWindows() # Close all OpenCV windows

Command Description

ls List all files and directories in the current folder

cd foldername Change to a specific directory

cd .. Go up one directory

mkdir myfolder Create a new directory called myfolder

rm myfile.txt Delete a file called myfile.txt

rm -r myfolder Delete a folder and its contents

cp file1.txt file2.txt Copy file1.txt to file2.txt

mv file.txt folder/ Move file.txt into the folder

nano script.py Edit a Python script using the built-in text editor

python3 script.py Run a Python 3 script

chmod +x script.sh Make a shell script executable

./script.sh Run an executable shell script

sudo shutdown now Shutdown the Raspberry Pi immediately

sudo reboot Reboot the Raspberry Pi

clear Clear the terminal screen

sudo apt update Update the list of available packages

sudo apt upgrade Upgrade installed packages to the latest version

sudo apt install package-name Install a software package (e.g., python3-opencv)

git clone https://github.com/user/repo.git Download a GitHub repository to your local Pi

How to do Basic Commands in Terminal
Raspberry Pi Terminal Command Cheat Sheet

