
Pi Wars is an international, challenge-based robotics competition in which teams build Raspberry
Pi-controlled robots and then compete in various non-destructive challenges to earn points.

We planned to build a four-wheel robot car which is driven by two TT motors and Raspberry Pi Pico
W. We will use a second Raspberry Pi Pico W and two joysticks for the remote controller. The car
and the controller will communicate via WiFi.

Pi War 2024 Log

Documentation of Pi War 2024

Planning

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/VRuiRShyyk31kAVH-28ecda96-29b5-4daf-a60e-21a281f9ad4d.JPG


We used a 5V regulator LM7805 to regulate 9V from the 9V battery to 5V to power up the
Raspberry Pico via the VSYS  and GND  pins. A diode between VSYS  and 5V output to present
backfeeding. More about powering Pico.

We used a second 9V battery to power up two TT motors, both power sources share the same
ground.

We used an L293D IC for controlling two motors. GPIO10  and GPIO11  pins control the directions of
the left motor and GPIO14  and GPIO15  pins control the directions of the right motor. More about

L293D IC.

Circuit
Car Circuit

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/z7NOcvrM0tiZxe2C-image.jpeg
https://lab.arts.ac.uk/books/raspberry-pi/page/how-to-power-the-raspberry-pi-pico
https://lab.arts.ac.uk/books/physical-computing/page/using-l293d-ic-for-motors
https://lab.arts.ac.uk/books/physical-computing/page/using-l293d-ic-for-motors


We use the same 5V regulator LM7805 to regulate the power supply for Raspberry Pico, and
connect two joysticks's data pins with pins GPIO26  and GPIO27 . One joystick controls left and right,
and the other controls forward and backwards.

This is a remote-controlled robot car so it needs to be wireless and must use battery as its power
supply. However, the battery is not a stable power supply which cannot supply a constant stable 9V
to both the motors and Pico. Even when the battery is not completely dry, it may become
insufficient to turn on the Pico when the voltage drops below a certain point. The same problem
goes for the motors but is less fatal, as the motors can still run, just slower.

This time, we just decided to change batteries more often, but it is not environmentally friendly or
efficient. We will look into power banks with a low-current charging mode.

Controller Circuit

Problems with batteries

Python Code

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/oGvLdUfWpwMS2QGy-picocarcircuit.png


All codes can be found on our Github page.

Testing two motors

import time

from machine import Pin

motor1a = Pin(14, Pin.OUT)
motor1b = Pin(15, Pin.OUT)

motor2a = Pin(10, Pin.OUT)
motor2b = Pin(11, Pin.OUT)

print("Hello.")

def right_forward():
    motor1a.value(0)
    motor1b.value(0)
    motor2a.value(0)
    motor2b.value(1)

def left_forward():
    motor2a.value(0)
    motor2b.value(0)
    motor1a.value(1)
    motor1b.value(0)

def right_backward():
    motor1a.value(0)
    motor1b.value(0)
    motor2a.value(1)
    motor2b.value(0)

def left_backward():
    motor2a.value(0)

https://github.com/creativetechnologylab/pi-wars


    motor2b.value(0)
    motor1a.value(0)
    motor1b.value(1)

def forward():
    motor1a.value(1)
    motor1b.value(0)
    motor2a.value(0)
    motor2b.value(1)

def backward():
    motor1a.value(0)
    motor1b.value(1)
    motor2a.value(1)
    motor2b.value(0)

def stop():
    motor1a.value(0)
    motor1b.value(0)
    motor2a.value(0)
    motor2b.value(0)

Testing two joysticks

import time

from machine import ADC, Pin

HIGH = 35000
LOW = 30000

def is_still(val):
    return val > LOW and val < HIGH

def increase(val):



    return val > HIGH

def decrease(val):
    return val < LOW

joystick_y = ADC(Pin(26))
joystick_x = ADC(Pin(27))

STOP = 1
STRAIGHT_FORWARD = 2
RIGHT_FORWARD = 3
LEFT_FORWARD = 4
RIGHT_BACKWARD = 5
LEFT_BACKWARD = 6
STRAIGHT_BACKWARD = 7

while True:
    x_val = joystick_x.read_u16()
    y_val = joystick_y.read_u16()

    x_still = is_still(x_val)
    y_still = is_still(y_val)

    x_increase = increase(x_val)
    y_increase = increase(y_val)

    x_decrease = decrease(x_val)
    y_decrease = decrease(y_val)

    if x_still and y_still:
        print(STOP)

    if y_increase and x_still:
        print(STRAIGHT_FORWARD)

    if y_decrease and x_still:
        print(STRAIGHT_BACKWARD)



When using wifi communication, the controller will be the server and the car will be the
client.

    if y_increase and x_increase:
        print(LEFT_FORWARD)

    if y_increase and x_decrease:
        print(RIGHT_FORWARD)

    if y_decrease and x_increase:
        print(LEFT_BACKWARD)

    if y_decrease and x_decrease:
        print(RIGHT_BACKWARD)

    time.sleep(0.1)

Testing wifi communication - SERVER

import random
import socket
import time

import network
from machine import ADC, Pin

ssid = "WIFI_NAME"
password = "WIFI_PASSWORD"

wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)

# Wait for connect or fail
max_wait = 10
while max_wait > 0:
    if wlan.status() < 0 or wlan.status() >= 3:
        break
    max_wait -= 1
    print("waiting for connection...")



Make sure you change the IP address of your pi, which you can find in the console when you run
the above server code.

    time.sleep(1)
# Handle connection error
if wlan.status() != 3:
    raise RuntimeError("network connection failed")
else:
    print("connected")
    status = wlan.ifconfig()
    # print('ip = ' + status[0])

# Open socket
addr = socket.getaddrinfo("0.0.0.0", 80)[0][-1]

s = socket.socket()
s.bind(addr)
s.listen(1)

print("listening on", addr)

# Listen for connections
while True:
    try:
        cl, addr = s.accept()
        request = cl.recv(1024)
        print(request)
        # No need to unpack request in this example
        ran_num = str(random.randint(0, 100))
        cl.send(ran_num)
        print("Sent: " + ran_num)
        cl.close()

    except OSError as e:
        cl.close()
        print("connection closed")

Testing wifi communication - CLIENT

import random
import socket



import time

import network
from machine import ADC, Pin

ssid = "WIFI_NAME"
password = "WIFI_PASSWORD"

wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)

# Wait for connect or fail
max_wait = 10
while max_wait > 0:
    if wlan.status() < 0 or wlan.status() >= 3:
        break
    max_wait -= 1
    print("waiting for connection...")
    time.sleep(1)
# Handle connection error
if wlan.status() != 3:
    raise RuntimeError("network connection failed")
else:
    print("connected")
    status = wlan.ifconfig()
    # print('ip = ' + status[0])

while True:
    ai = socket.getaddrinfo("192.168.1.115", 80)  # Address of Web Server
    addr = ai[0][-1]

    # Create a socket and make a HTTP request
    s = socket.socket()  # Open socket
    s.connect(addr)
    s.send(b"Anything")  # Send request
    ss = str(s.recv(512))  # Store reply
    # Print what we received
    print(ss)
    # Set RGB LED here



    s.close()  # Close socket
    time.sleep(0.2)  # wait

Final code for controller - SERVER

import socket
import time

import network
from machine import ADC, Pin

HIGH = 35000
LOW = 30000

def is_still(val):
    return val > LOW and val < HIGH

def increase(val):
    return val > HIGH

def decrease(val):
    return val < LOW

joystick_y = ADC(Pin(26))
joystick_x = ADC(Pin(27))
led = Pin("LED", Pin.OUT)

STOP = 1
STRAIGHT_FORWARD = 2
RIGHT_FORWARD = 3
LEFT_FORWARD = 4
RIGHT_BACKWARD = 5
LEFT_BACKWARD = 6
STRAIGHT_BACKWARD = 7

ssid = "WIFI_NAME"



password = "WIFI_PASSWORD"

wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)

# Wait for connect or fail
max_wait = 10
while max_wait > 0:
    if wlan.status() < 0 or wlan.status() >= 3:
        break
    max_wait -= 1
    print("waiting for connection...")
    time.sleep(1)
# Handle connection error
if wlan.status() != 3:
    raise RuntimeError("network connection failed")
else:
    print("connected")
    status = wlan.ifconfig()
    print('ip = ' + status[0])
    led.on()
    

# Open socket
addr = socket.getaddrinfo("0.0.0.0", 80)[0][-1]

s = socket.socket()
s.bind(addr)
s.listen(1)

print("listening on", addr)

while True:
    try:
        cl, addr = s.accept()
        request = cl.recv(1024)
        print("request", request)

        # print("loop")



        x_val = joystick_x.read_u16()
        y_val = joystick_y.read_u16()

        x_still = is_still(x_val)
        y_still = is_still(y_val)

        x_increase = increase(x_val)
        y_increase = increase(y_val)

        x_decrease = decrease(x_val)
        y_decrease = decrease(y_val)

        if x_still and y_still:
            print(STOP)
            cl.send(str(STOP))

        if y_increase and x_still:
            print(STRAIGHT_FORWARD)
            cl.send(str(STRAIGHT_FORWARD))

        if y_decrease and x_still:
            print(STRAIGHT_BACKWARD)
            cl.send(str(STRAIGHT_BACKWARD))

        if y_increase and x_increase:
            print(LEFT_FORWARD)
            cl.send(str(LEFT_FORWARD))

        if y_increase and x_decrease:
            print(RIGHT_FORWARD)
            cl.send(str(RIGHT_FORWARD))

        if y_decrease and x_increase:
            print(LEFT_BACKWARD)
            cl.send(str(LEFT_BACKWARD))

        if y_decrease and x_decrease:
            print(RIGHT_BACKWARD)
            cl.send(str(RIGHT_BACKWARD))



        cl.close()

    except Exception as e:
        print(e)
        cl.close()
        print("connection closed")

    time.sleep(0.1)

Final code for car - CLIENT

import random
import socket
import time

import network
from machine import ADC, Pin

motor1a = Pin(14, Pin.OUT)
motor1b = Pin(15, Pin.OUT)

motor2a = Pin(10, Pin.OUT)
motor2b = Pin(11, Pin.OUT)

led = Pin("LED", Pin.OUT)

ssid = "WIFI_NAME"
password = "WIFI_PASSWORD"

wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)

# Wait for connect or fail
max_wait = 10
while max_wait > 0:
    if wlan.status() < 0 or wlan.status() >= 3:
        break
    max_wait -= 1
    print("waiting for connection...")



    time.sleep(1)
# Handle connection error
if wlan.status() != 3:
    raise RuntimeError("network connection failed")
else:
    print("connected")
    status = wlan.ifconfig()
    print('ip = ' + status[0])
    led.on()

def right_forward():
    motor1a.value(0)
    motor1b.value(0)
    motor2a.value(0)
    motor2b.value(1)

def left_forward():
    motor2a.value(0)
    motor2b.value(0)
    motor1a.value(1)
    motor1b.value(0)

def right_backward():
    motor1a.value(0)
    motor1b.value(0)
    motor2a.value(1)
    motor2b.value(0)

def left_backward():
    motor2a.value(0)
    motor2b.value(0)
    motor1a.value(0)
    motor1b.value(1)

def forward():



    motor1a.value(1)
    motor1b.value(0)
    motor2a.value(0)
    motor2b.value(1)

def backward():
    motor1a.value(0)
    motor1b.value(1)
    motor2a.value(1)
    motor2b.value(0)

def stop():
    motor1a.value(0)
    motor1b.value(0)
    motor2a.value(0)
    motor2b.value(0)

commands = {
    "1": stop,
    "2": forward,
    "3": right_forward,
    "4": left_forward,
    "5": right_backward,
    "6": left_backward,
    "7": backward,
}

while True:
    ai = socket.getaddrinfo("192.168.0.100", 80)  # Address of Web Server
    addr = ai[0][-1]

    # Create a socket and make a HTTP request
    s = socket.socket()  # Open socket
    s.connect(addr)
    s.send(b"Anything")  # Send request
    ss = s.recv(512).decode()  # Store reply
    # Print what we received



In general, if both the server pico and the client pico are connected to the same wifi network, they
can communicate. However, most routers provide a dynamic IP address which may change every
time, based on the number of devices connected and which device is connected to the network
first. We only used the router for the controller and the car in the beginning, and we started to
experience problems when there were other devices connected to our router.

Therefore, we need to reserve IP addresses for the controller and the car, to make sure they are
listening to the right address. This process may be different based on what router you are using.

You may see something similar like this:

The car is Princess Peach-inspired, so very pink. We laser-cut serval layers to form the main body
of the car.

We have four identical wheels. However, the rubber surface of the back wheels has created too
much friction which the front wheels are not powerful enough to pull. In the end, we needed to
remove the rubber bit of the back wheels.

    try:
        commands[ss]()
    except KeyError:
        commands["1"]()

    # Set RGB LED here
    s.close()  # Close socket
    time.sleep(0.2)  # wait

Router Setting

Car Design

Problems with back wheels

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/rjUik8ZJS3vqKygC-image-1713540982041.png


Continue with the Princess Peach theme, the controller is a heart-shaped box with holes for the on-
off button and two joysticks.

Controller Design



https://lab.arts.ac.uk/uploads/images/gallery/2024-04/WBR6jyAFmkyPRX0U-screenshot-2024-04-19-at-16-56-06.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-04/OcBdB3Mib18CPBfo-screenshot-2024-04-19-at-16-56-16.png


Final Controller!



https://lab.arts.ac.uk/uploads/images/gallery/2024-04/ggcLj8VVz8i2uwk4-screenshot-2024-04-19-at-17-23-31.png
https://lab.arts.ac.uk/uploads/images/gallery/2024-04/WrSW35myvm9sTjkt-screenshot-2024-04-19-at-17-20-45.png


We need to poke the balloons on our opponent. This is our opponent, Dangly TOO!

Testing!

Competition Day Snaps
Challenge 1 - Pi Noon: The Hindenburg Disaster



https://lab.arts.ac.uk/uploads/images/gallery/2024-04/V3jg1Jacu3YeSc0H-148f9663-64b1-40a7-b608-a307e1c1b1dc.JPG
https://lab.arts.ac.uk/uploads/images/gallery/2024-04/InURrPytGgvkD9sL-64776656-2eed-49f8-b11f-9585cbcc2b28.JPG


We need to put the green barrels in the blue square and the red barrels in the yellow square. There
were some impressive robots doing it autonomously!

We need to go to the red lightbox as fast as we can.

Challenge 2 - Eco Disaster

Challenge 3 - Minesweeper

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/khTvD0HuCNjknOWz-screenshot-2024-04-22-at-10-31-37.png


We need to escape the maze without looking at it.

Challenge 4 - Escape Route

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/U2LWQHE4bBwl6qgj-screenshot-2024-04-22-at-10-33-55.png


This is the hardest and the most unexpected challenge of all. Unfortunately, Edwina is not built for
this, so we didn't finish the course.

Challenge 5 - The Zombie Apocalypse

Challenge 6 - The Temple of Doom

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/Q1qMAnt5t3Dc8hTA-img-4342.JPG


Revision #5
Created 19 April 2024 14:56:31 by Joanne Leung
Updated 22 April 2024 09:37:37 by Joanne Leung

https://lab.arts.ac.uk/uploads/images/gallery/2024-04/O5Cm44yxBTh2bbgD-img-4338.JPG

