
GPIO stands for General-Purpose Input/Output. GPIOs have no predefined purpose and are unused
by default. If used, the purpose and behaviour of a GPIO are defined and implemented by the user.
You can find the GPIO pins on the top of most Raspberry Pi models or other microcontrollers such
as Arduino.

GPIO pins are mostly used for connecting electronics with computers/microcontrollers. These
components can then be programmed to perform different tasks using different languages, such as
C++, Python and Scratch. In this tutorials, we will focus on the GPIO pins on Raspberry Pi.

GPIO pins on Raspberry Pi have two numbering systems, Board and Boardcom (BCM). For example,
the board pin 8 and BCM pin 14 are referring the same pin. Numbering is important based on which
programming languages and libraries you use.

What are GPIO pins on Raspberry Pi?

What is GPIO?

Numbering of GPIO pins

https://lab.arts.ac.uk/uploads/images/gallery/2024-02/5loOy9yuofsJCrSk-image-1708087453528.png

BCM numbering matches up with the tiny labels printed on the Raspberry Pi, like GPIO14 . It is used
in most programming languages such as Python and Scratch.

Board numbering is based on the physical locations of the pins on the Raspberry Pi. It starts from
the top left corner as Pin 1 , left to right then next line, and the bottom right will be the last pin, Pin
40 . Board numbering is less common to be used, the only place you will see is probably in one or
two Python libraries.

1. BCM numbering

2. Board numbering

3. Functionalities of the Pins

https://lab.arts.ac.uk/uploads/images/gallery/2024-02/dpvzcPaj18mhoM5S-image-1708087664055-45-50-pm.png

Each pin on the pi has different functions and their physical locations may move from model to
model. The pins without a BCM number are power output pins, such as GND and 5VDC . Pins with a
BCM number are all PWM pins which can be used as input or output. Besides being a PWM pin, they
also have other unique functions, such as GPIO 02 and GPIO 03 are also the pins of SDA and SCL
for I²C communication. You can refer to the pinout of each model to find out more details of each
pin.

You will probably need a breadboard to make connections easier. In general, I will not suggest
direct soldering on a Raspberry Pi, so it can be reused more easily. You can also use a jumper cable
to extend all pins to a breadboard.

There are many options to program a Raspberry Pi with physical computing components, including
Scratch, Bash, Node.js, C etc. We will focus on Python here. Below are two codes using two
different libraries but doing the exact same thing.

Building Circuit with Raspberry Pi
UNPLUG your Pi when you are connecting electronics and DOUBLE CHECK your
connections!Raspberry Pi is not short-circuit-proof as Arduino. If you have a short circuit or
you give more power than it could take to the GPIO pins, it will break the Pi.

Popular GPIO libraries with Python

https://lab.arts.ac.uk/uploads/images/gallery/2024-02/DLlEHnjg52zHue5K-image-1708089722095.png

The main thing to remember about gpiozero library is that it focuses on buttons and LED instead of
the actual GPIO pins. i.e. LED = OUTPUT, button = INPUT. Some people may find the syntax easier
to understand, like turning on the LED is literally leds.on() . gpiozero is simple and quick and it's a
great place to start experimenting as a beginner. But if you are not actually using LEDs or buttons,
it can be a bit confusing and it is not very compatible to merge with codes from other libraries as
well. Find its documentation here.

1. gpiozero

example of programming Raspberry Pi GPIO with gpiozero
refer to gpiozero.readthedocs.io

import gpiozero as gpzero
from time import sleep

set up pushbutton and bank of leds
resetbutton = gpzero.Button(3)
leds = gpzero.LEDBoard(26,16,20,21)

functions to control behavior
def LightsOn ():
 while resetbutton.is_pressed:
 leds.on()

def ResetCounter ():
 global counter
 leds.off()
 counter = 0

def binary2lights(showThis):
 leds.value = (
 showThis & 0b1000,
 showThis & 0b0100,
 showThis & 0b0010,
 showThis & 0b0001)

setup button handlers
resetbutton.when_pressed = LightsOn
resetbutton.when_released = ResetCounter

send 0...15 to lights

https://gpiozero.readthedocs.io/en/stable/

RPi.GPIO is a code library that allows Python to communicate with the GPIO. It is widely used and
supported. In fact, gpiozero is developed based on RPi.GPIO. I find this library closer to C++ in
Arduino IDE. For example, instead of on() and off() , it uses HIGH and LOW . Find its
documentation here.

while True:
 ResetCounter()
 while counter < 16:
 binary2lights(counter)
 counter += 1
 sleep(1)

2. RPi.GPIO

Borken Library!This library is currently not usable for Raspberry Pi 5. If you are using Pi 4
or older, it will be fine.

example of programming Raspberry Pi GPIO with rpi.gpio
refer to sourceforge.net/p/raspberry-gpio-python/wiki/Home

import RPi.GPIO as GPIO
from time import sleep

GPIO.setmode(GPIO.BCM) # declare BCM numbering scheme (vs GPIO.BOARD)

set up pushbutton and bank of leds
resetbutton = 3
leds = [26, 16, 20, 21]
GPIO.setup(3, GPIO.IN)
GPIO.setup(leds, GPIO.OUT)

function to handle reset button
def handleReset ():
 while not GPIO.input(resetbutton):
 GPIO.output(leds, GPIO.HIGH)
 print("waiting for button")
 resetLightsandCounter()

def resetLightsandCounter():

https://pythonhosted.org/RPIO/

 global counter
 GPIO.output(leds, GPIO.LOW)
 counter = 0
 print("reset")

setup button handlers
GPIO.add_event_detect(resetbutton, GPIO.FALLING)

send 0...15 to lights
while True:
 resetLightsandCounter()
 while counter < 16:
 if GPIO.event_detected(resetbutton):
 handleReset()
 GPIO.output(leds, (
 GPIO.HIGH if counter & 0b1000 else GPIO.LOW,
 GPIO.HIGH if counter & 0b0100 else GPIO.LOW,
 GPIO.HIGH if counter & 0b0010 else GPIO.LOW,
 GPIO.HIGH if counter & 0b0001 else GPIO.LOW
)
)
 counter += 1
 sleep(1)

Revision #6
Created 16 February 2024 12:38:09 by Joanne Leung
Updated 29 February 2024 14:24:04 by Joanne Leung

